

MSc in Official Statistics Statistical Computing: Statistical Metadata

Andrew Westlake

Survey & Statistical Computing 63 Ridge Road, London N8 9NP, UK +44 (0) 20 8374 4723 AJW@SaSC.co.uk (E-Mail) www.SaSC.co.uk

Outline

- What is Metadata?
- What is Statistical Metadata?
- What is it for, how is it used?
- Different ways of thinking about and classifying Meta-data
- Types and Applications of Metadata
- Examples of Standards for Metadata
- Where does it come from?

What is Metadata?

• Data *about* Data

- » Not data about the subjects of the database (the instances in the design)
- » Information about the design, or anything connected with it
- » Can see this as a level of abstraction
- Broad Range
 - » Technical descriptions of files, through to
 - » Abstract specification of concepts
- Term used by Sundgren in 1973

What is Statistical Metadata?

- Any information that is needed by people or systems to make proper and correct use of the real statistical data when:
 - » Capturing
 - » Reading
 - » Processing
 - » Presenting
 - » Analysing
 - » Interpreting
 - » Exchanging
 - » Searching
 - » Browsing
- Broad definition
 - » Anything that might influence or control the way in which the core information is used by people or software

What is Statistical Metadata?

- Includes
 - » file descriptions
 - » codebooks
 - » processing details
 - » sample designs
 - » fieldwork reports
 - » conceptual motivations, terminology
- Use
 - » Can be used informally by people who read it (and use it to affect the way they work with or interpret information)
 - » And formally by software to guide and control the way information is processed
- Metadata is Data
 - » Has structure and associated functionality
- Processes can generate metadata

What is Metadata for?

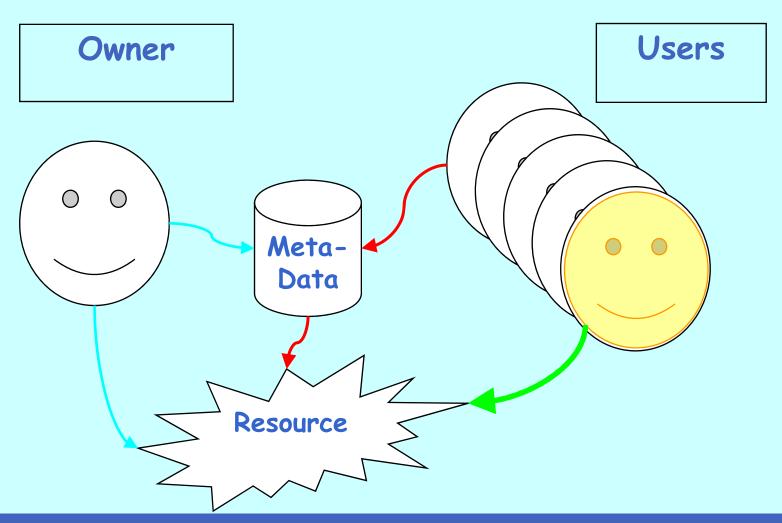
- To supply human readable information that facilitates the finding and interpretation of electronic data in a complex environment
- To supply machine processable data that facilitates the exchange of information between systems and the processing of data within a system

Joanne Lamb, Metanet

Why is Metadata important?

- Sharing data
 - » 'In my head' is not good enough
- Archiving
 - » Secondary users need good information
- Discovery
 - » Does data exist that can help me answer a problem?
- Automation
 - » Parameterisation of standardised processes

See RSS Archive – Preserving and Sharing



General Metadata

- Can relate to any resource that is shared » Impact of Dublin Core, for Web Discovery
- Metadata is the information that the owner of a resource needs to make available to potential users of that resource, so that they can use it correctly
 - » Not new information, but not accessible to users
 - » May be in heads, on paper, in proprietary software
- In statistics, can apply beyond micro datasets
 - » Aggregate data
 - » Survey motivation and design
 - » Derivations and transformations
 - » Data integration and statistical modelling
- Various standards and proposals, discussed later
- Focus on using Metadata to support the *use* of a resource

Summary: Metadata links Owner to User

Levels of Abstraction

- Helpful to think at different levels
 - » Depends on the purpose and objective
 - » Related to 'top-down' vs 'bottom-up' views of systems
 - » Applies to multiple aspects
 - Different dimensions, each with multiple levels
- Often choose 4 levels for modelling
 - » 0 The real thing, no abstraction
 - » 1 The specification (model) of the real thing
 - » 2 The specification of what is allowed in a model
 - » 3 The specification of what is allowed in a specification
 - (Level 3 is not used much)

Levels of Contextual Abstraction

- Actual files and databases
- Agreed standards for actual data
 » NACE, ICD, GesMes, SDMX
- Conceptual structures
 - Industry classification, Disease classification, Data Exchange structures
- Terminology
 - » In a Thesaurus, with Concepts, Terms and Relationships
 - Synonym, type of, broader than, etc

Variables in Statistics

- E.g Employment Measurements
 - » 0 Instances of employment for respondents within data files
 - » 1 Agreed coding standards for Employment
 - » 2 Concepts: what is Employment?
- Different purposes
 - » Concepts for Discovery and understanding
 - » Standards for exchange and comparability, presentation and understanding
 - » Codes in data for analysis
- Levels 1 and 2 are Metadata

Levels of Structural Abstraction

Level 4 Tools and Models (Metamodel) Structural scheme

Level 3

Statistical Ontology Structure model (Subject matter scheme)


Level 2 Statistical Metadata (2nd Order Data) Subject matter model (Data scheme)

Level 1 (Statistical) data (1st Order Data) Data model

Grossmann, Metanet

Four dimensions for classifying Metadata

Grossmann, Metanet

Statistical Structure

- What statistical structure is the metadata about?
 - » Population
 - » Population element
 - » Dataset
 - » Variable
 - » Value set
 - » Aggregation
 - » Conclusion
 - ≫ ...

Processing Stage

- What stage does the metadata apply to?
 - » Design
 - » Data collection
 - » Data Processing
 - » Transformation and Analysis
 - » Dissemination
 - » Exchange
 - ≫ ...

Role

- What is the metadata for?
 - » Semantics (understanding meaning and purpose)
 - » Statistical Validity (ensuring valid operations)
 - » Computation (ensuring and recording correct processing)
 - » Administration (recording ownership and responsibility)
 - » Discovery (providing access for secondary users of the statistical data)
 - ≫ ...

Level of Operational Abstraction

• Intentional / Abstract

- » The purpose and intension for doing things a particular way
- » Explanations of why particular decisions were taken
- » Usually textual
- » Written by people, in advance of thing described
- » May come from (or be references to) collections of standards or guidelines
- » E.g. the reason or concept behind a particular variable
- Extensional / Concrete
 - » Actual things done
 - » Can flow from or be captured by systems/software that supports processes
 - » E.g. the actual question, definition and coding of a variable

Metadata Functionality

• Access

- » Display for people, read for systems
- » Depends on Purpose, Structure and Context
- Linking
 - » To and from the thing it's about, including other metadata

Languages

- » Objects are independent of language, but their names and descriptions can be available in multiple languages
 - Not all concepts translate directly
- Versions
 - » Things change (e.g. classification revisions)
 - Data is coded according to a version
 - Versions must be accessible, and the use of an object must include the version

Discovery through Metadata

- Generic descriptions of subjects
 - » Population, Classifications, Measures
 - » Linked to concept definitions for searching
- Specific topics of a dataset or summary
 - Formal definitions of standard components selection rules, standard classifications, measure types
 - » Specific descriptions of substantive content source variable definitions, questionnaire structure, etc
- Accessibility
 - » Metadata must be available to search engines and users
 - » Non-specialists do not approach through standard terms or structure

Metadata Standards

- Specification of structure and purpose (including semantics) of different types of metadata, of various types
- Lots of proposals
 - » Many omit purpose and semantics, just structure
- Generally have a limited view
- Useful to relate to the four dimensions

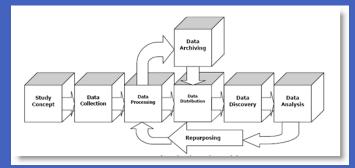
Triple-s

• Structure

- » Describes a Dataset
- Stage
 - » Exchange
- Role
 - » Computation
- Level
 - » Extensional describes fields and codes in a dataset

Data Documentation Initiative - DDI 3

• Structure


» Comprehensive - Describes a collection of Studies from conception to analysis

• Stage

- » Design through to archiving and exchange
- Role

» Administration, semantics, computation

- Level
 - » Intentional and extensional

• Structure

» Data Element

- Stage
 - » Design
- Role
 - » Computation, Discovery
 - Specification of data elements in a Repository
- Level
 - » Extensional

Neufchatel Terminological Model

• Structure

» Classifications

- Stage
 - » Collection, Dissemination
- Role
 - » Computation, Administration, Discovery

• Level

» Extensional (codes, labels and mappings) and Intentional (responsibilities, sources, case law)

SDMX – Statistical Data & Meta-data Exchange

• Structure

- » Aggregate data and time series
- Stage
 - » Exchange, Dissemination
- Role
 - » Administration, Discovery, Transfer
- Level
 - » Mostly Extensional

Well-resourced with big players (IMF, World Bank, Eurostat), limited objectives, links to DDI 3

e-GMS - Government Metadata Standard

- Structure
 - » Any resource (not just statistics)
- Stage
 - » Dissemination
- Role
 - » Discovery
- Level
 - » Intentional

Derived from the Dublin Core standard for discovery metadata

e-GMS 3.1 Record

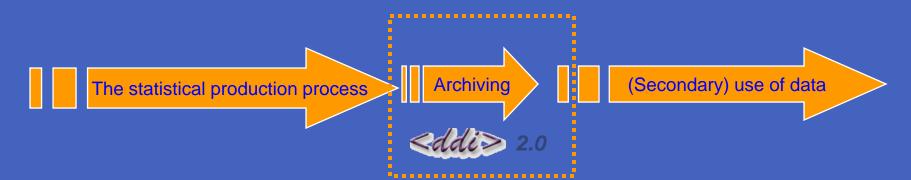
#Accessibility[1] : String #Addressee[*] : String #Aggregation[0..1] : String +Audience[0..1] : String #Contributor[0..1] : String #Coverage[0..1] : String #Creator[1] : String #Date[1] : String #Description[0..1] : String #Digital Signature[0..1] : String #Disposal[0..1] : String #Format[0..1] : String #Identifier[1] : String #Language[0..1] : String #Location[*] : String #Mandate[0..1] : String #Preservation[0..1] : String #Publisher[1] : String #Relation[0..1] : String #Rights[0..1] : String #Source[0..1] : String #Status[0..1] : String #Subject[1] : String #Title[1] : String #Type[0..1] : String +Search(in Field : e-GMS Element) : Long

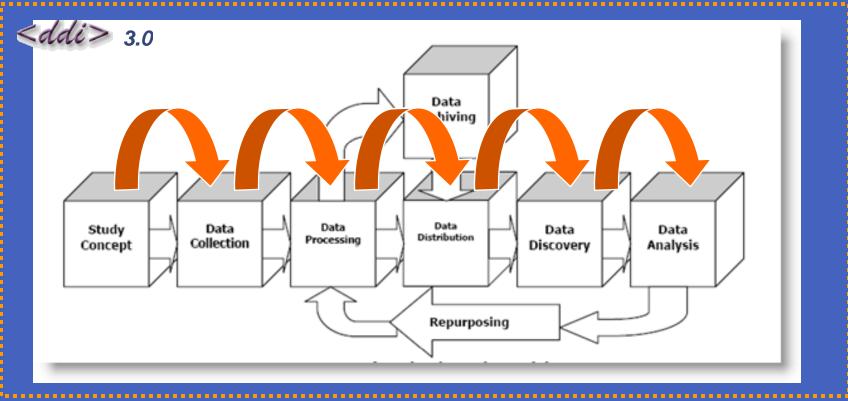
Unified Metainformation Architecture in Statistics (UMAS)

• Structure

- » All statistical objects and processes
- Stage
 - » All
- Role
 - » All
- Level
 - » Both

This is a generic model of meta-information for all statistical processes


StatModel from OPUS


- Structure
 - » Statistical models and related Variables, Parameters and Data
- Stage
 - » Specification, Fitting (including use of Data), Results
- Role
 - » Discovery, Presentation, Validation, Exchange (of models)
- Level
 - Intentional (Definitions, Motivations, Sources) and Extensional (Specifications, Processes)

This proposal goes far beyond usual concepts of Statistical Metadata

DDI 3.0 design goals - life-cycle model

27-Feb-09

Benefits of the DDI Approach

- Interoperability
 - » Codebooks marked up using the DDI specification can be exchanged and transported seamlessly, and applications can be written to work with these homogeneous documents.
- Richer content
 - The DDI was designed to encourage the use of a comprehensive set of elements to describe social science datasets as completely and as thoroughly as possible, thereby providing the potential data analyst with broader knowledge about a given collection.
- Single document multiple purposes
 - » A DDI codebook contains all of the information necessary to produce several different types of output, including, for example, a traditional social science codebook, a bibliographic record, or SAS/SPSS/Stata data definition statements. Thus, the document may be repurposed for different needs and applications. Changes made to the core document will be passed along to any output generated.
- On-line subsetting and analysis
 - » Because the DDI markup extends down to the variable level and provides a standard uniform structure and content for variables, DDI documents are easily imported into on-line analysis systems, rendering datasets more readily usable for a wider audience.
- Precision in searching
 - Since each of the elements in a DDI-compliant codebook is tagged in a specific way, field-specific searches across documents and studies are enabled. For example, a library of DDI codebooks could be searched to identify datasets covering protest demonstrations during the 1960s in specific states or countries.

Capturing Metadata

- It's boring
- If it is not done well it is not used, so is not worthwhile
- Experience from SCB Doc
- Wherever possible, capture from other processes
 - » Intentional metadata from project justifications, standard designs, ...
 - » Extensional metadata from metadata-aware systems, for design, data entry, manipulation, ...
- Contextual linking will generally need to be manual
- DDI and SDMX developing Tools and Components

What's New?

- Internet
 - » Vastly improved ease and scope of accessibility
 - » Need to focus discovery processes and provide functionality and access
- XML (eXtended Markup Language)
 - » Representation and exchange of complex data structures
 - » But what are the structures and semantics?
- Money
 - » Data Warehouses, OLAP
 - » Commercial pressures for Standardisation

What is happening?

- Commercial developments
 - » Big initiatives all about structure, e.g. CWM, eb-XML
 - Valuable, but not enough for statistics
 - » Survey data systems
 - Triple-S, SPSS MR Dimensions, ... Smart data entry software (QEDML, Askia, ...)
- Statistical Office Initiatives
 - » Very bottom-up
 - Coding, exchange formats, Often focussed on aggregates (SDMX)
 - » Standardised documentation (Dublin Core, e-GMS)
 - Little structure
 - » Neufchatel and related initiatives for Classifications, ...
 - » ONS Modernisation, Repository including Meta-data ...
- Research Projects
 - » Survey data
 - DDI Codebook, StatModel, ...
 - » Eurostat (plus partners) all dead!
 - Statistical systems using metadata Nesstar, Metaware, Tadeq
 - Exploration of functionality Idaresa, Addsia, IMIM , Codacmos
 - Development of Standards and Structures IQML, MetaNet

What next?

- We need standards about structure and functionality for statistical metadata
- Build metadata into system designs, as part of statistical data structures, at whatever levels are feasible
- Capture metadata wherever possible, with as much structure as possible
- Think about the other people who will need to know about the data, or what you did

Summary

- Statistical Meta-data is important
 - » Especially for secondary or subsequent users
 - » Simplify processing by using prior specifications
 - » Improving quality through precise specification and explanations
- Can apply to all aspects of statistical processing
 - » Most current use focussed on data description and exchange
- Lots of proposals for standards
 - » Few actually used
 - » Triple-s, DDI, SDMX all have merit
- Small market (cf. RDBMS, for example) so little investment
 - » Encourage more initiatives and use! Build into other projects!

