

MSc in Official Statistics Statistical Computing: Database Methods

Andrew Westlake

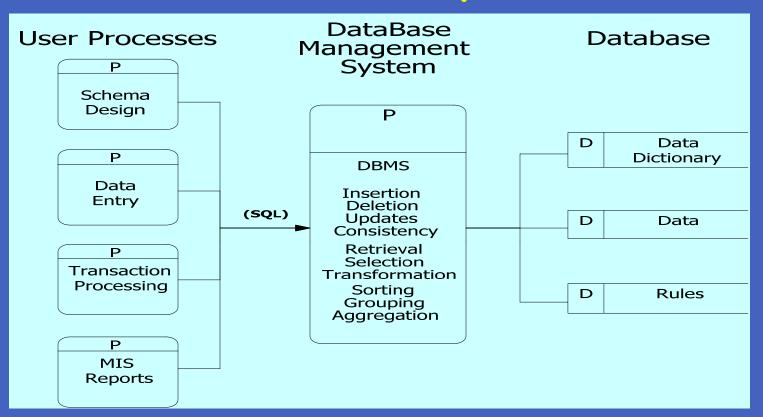
Survey & Statistical Computing
63 Ridge Road, London N8 9NP, UK
+44 (0) 20 8374 4723
AJW@SaSC.co.uk (E-Mail)
www.SaSC.co.uk

Database Methods

- A Database is:
 - » An organised collection of related information
- Different Models exist for
 - » The structures of information that can be stored
 - » Operations that can be performed on the information
 - » How the collection is organised
- Examples of Database Models
 - » Relational
 - » Object-relational
 - » XML
 - **>>** ...

What is a Model?

- Durbin
 - » All models are wrong, but some are useful
- Statistical Models
- Database Models
- IT Models and modelling
 - » Structural, conceptual, logical
 - » Modelling is the process of refining your understanding of a system
- Means different things in different contexts



The Relational Model

- A logical specification of the content and behaviour of a database management system, including
 - The types of structure that can be present in a database
 - The properties of elements that can be stored in these structures
 - The operations that can be performed on these structures and their behaviour
 - Facilities that must be present in the database management system
 - The general nature of the interactions between the database and its users and administrators.
 - » Codd's Rules specify properties that a Relational DataBase Management System (RDBMS) must possess
- SQL
 - » A standard language with which to interact with a RDBMS

Relational Database System Structure

User Processes

Applications & Tools, include functionality, semantics appropriate to application

Data Modelling

Analysis of the data structures and flows needed to produce the objectives of the system - the logical model

SQL

Standard interface to an RDBMS, syntax and embedding

Relational Model

Specification of functionality, behaviour and scope

Storage & Access Methods

Implementation issue, affects performance

Commercial Relational DataBase Management Systems

- Good implementation of the relational model and SQL
 - » Structure, Organization, Manipulation, Description, Storage, Integrity, Security
 - of Data, but NOT Interpretation
 - » Concern for practical problems of data access and manipulation
 - » Optimized for commercial applications, transaction processing
- Consists of DBMS and a set of tools
 - » Data entry, Reporting, Application development
- Support for Client-Server architecture
 - » i.e. separation of DBMS and programs which use data
 - » allows independent suppliers for tools
 - » allows data use by other applications
- Useful functionality for statistical data management

Objectives of DBMS

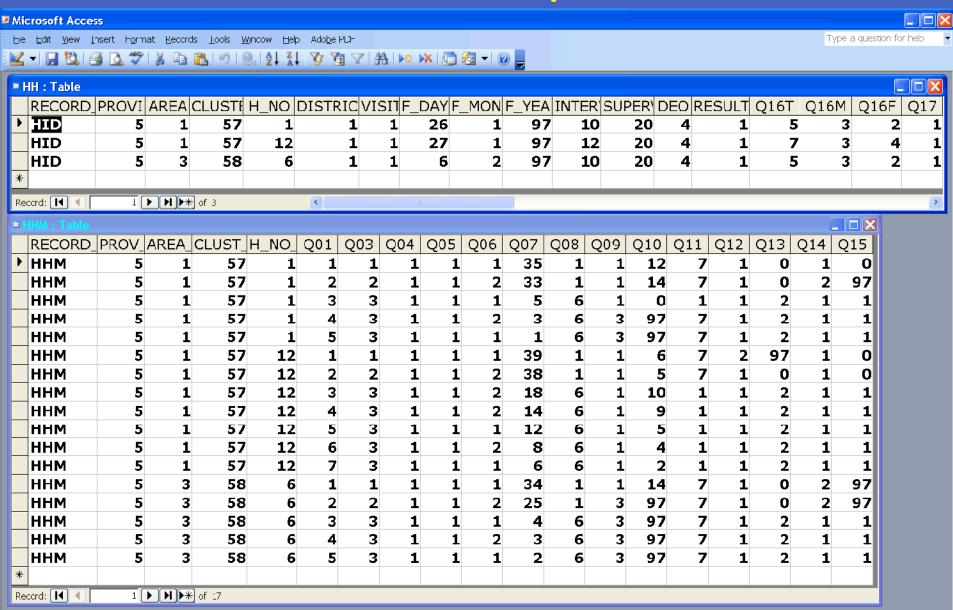
- The DBMS layer between the Data Store and the User Processes should mean that
 - » Redundancy can be reduced
 - » Inconsistency can be avoided
 - » The data can be shared
 - » Standards can be enforced
 - » Security restrictions can be applied
 - » Integrity can be maintained
 - » Conflicting requirements can be balanced
 - » Data Independence can be achieved

RDBMS Strengths

- Data Modelling
 - » Useful tools for understanding data structures and flows
- Relational Model
 - » Precise, formal mathematical specification of structure and behaviour
- SOL
 - » International Standard (SQL2, 1992), widely implemented
 - » Various extensions since then latest in 2008
- Current Implementations
 - » Widely available, well supported, good implementations, integration with other products, add-on market for tools

Relational Model

- Components
 - » Tables, Keys, Integrity, Domains, Nulls, Joins, Security
- Data Independence
 - » Separate processes from information which is not essential for them, e.g. physical aspects of storage
 - » Cf. Statistical Packages
- Views
 - » User processes (and people) see data (dynamically) in the form and structure they need, not as it is decomposed in the database
- Universality
 - » Everything is data, and is processed in the same way (subject to permissions)
- Flexibility of access
 - » Data linking determined at run-time, based on data values
 - » SQL commands can be constructed at run-time



Illustration

- Structure of Pakistan Fertility and Family Planning Survey
- PFFPS in MS Access

HH and HHM Sample Records

NUM

Datasheet View

Components of a SQL database

Data type

- » Integer, Real, String, Date, Memo, etc
- Field
 - » defined over a data type, has a name, cf. variable.
 - » NULL values supported. Can have constraints
- Record
 - » a set of values, one associated with each field
- Table
 - » defined over a set of fields, has a name, consists of a set of records, can have keys and indexes
- SQL DataBase
 - » a set of tables, can have other properties, including relationships and implementation details
- PFFPS example

27-Feb-09

- International Standard, actively revised
 - » SQL2 (1992) has major improvements related to Domains and User Integrity Rules
 - » Later versions (1999, 2003, 2008) offer minor changes, not widely implemented
- Widely available in good RDBMS software
- Text (script) language, used by programs and people
 - » Stored or constructed at run-time
 - » Easy for simple tasks, but limited in scope
- Designed to support tools which are independent of the DBMS
 - » cf. Client-Server architecture
- User and Programmer skills portable across products and sites
- Has sections for
 - » Defining database structure (DDL),
 - » Manipulating database content (DML)
 - » Ensuring database integrity, and
 - » Managing database security

Views

- Stored definition about how to select and manipulate data from the database
 - » Important idea, with wide implications
 - » Implemented as Queries (SQL Select statement)
- Result looks like a table
- Can be used like a table in many contexts
 - » Viewing data in the form needed by the user
 - Can sometimes be used for data entry, but depends on the form of query
- Dynamic evaluation
 - » Ensures that the viewed information is up to date
 - May be inefficient if the information does not change

Current Implementations

- Stable, Mature products
 - » Major products easily scaleable across wide range of hardware.
 Oracle, MS SQL Server
 - » Good PC products now available, particularly Access, MySQL
- Useful Tool kits provided
 - » Data Entry and retrieval screens, report writers
 - » Active market in add-on products
- Client-Server facilities
 - » Many packages can act as clients, e.g. SAS, SPSS
 - » Efforts towards standardization of Client-Server communications, ODBC, ODAPI, XML
- Design tools
 - » Various systems for Entity-Relationship models, and accompanying code development

Summary

- Relational databases are ubiquitous, and are useful for largescale data collections
- Some manipulation and aggregation operations can be done more easily than in statistical packages
- Relational model is a useful way of thinking about data structures
- Implementations do not address issues of importance to Statisticians
- IT staff and Statisticians have different ways of thinking about data - we both have things to learn
- MS Access is a useful tool for manipulating moderate amounts of data with more complex structure
- Not a replacement for statistical packages for statistical analysis

27-Feb-09