

MSc in Official Statistics Statistical Computing: Database Design

Andrew Westlake Survey & Statistical Computing 63 Ridge Road, London N8 9NP, UK +44 (0) 20 8374 4723 AJW@SaSC.co.uk (E-Mail) www.SaSC.co.uk

Relational Database System Structure

Design Processes

• Data Analysis or Modelling

- » This is the identification of the underlying entities and relationships needed to implement the external views of the database
- » Makes use of Entity-Relationship diagrams
- Normalisation
 - » move towards a form in which all data values are atomic and redundancy is minimised
- Physical design
 - » This involves the selection of indexes, choice of storage method (where available), introduction of redundancy to speed operations

Data Modelling

- Entity-Relationship Modelling
 - » Useful tool for analysing the structure of data
 - » Much observational data has (potentially) complex structure.
 - Statisticians are good at reducing structure to simple forms (rectangular or hierarchical) when designing data collection procedures (for studies, surveys, experiments)
 - This can involve some loss of information
 - ER Modelling helps to identify the structures
 - » Implementation should be easy with a relational database system, or the loss of information from simplification of structure can easily be seen
- Data-Flow Diagrams
 - » Useful for identifying processing requirements
- Tools available for modelling and design
 - » Diagram templates in Visio, e.g.:
 - Database Database Diagram
 - Flowchart Data Flow Diagram

Building the Conceptual Schema

- Represented by ER Model
- Based on external requirements
- Uses understanding of relational model
- Can include physical DB details in most ER diagram software
- Can generate much of the Internal Schema from a detailed ER model

Conceptual Schema for PFFPS

HAP Internal Schema

• Entities

- » The components that have some existence in the system being modelled
- » Usually lots of Instances of each Entity
- Relationships
 - » Links between Entities
 - (that associate instances of different entities)
 - Author writes books
 - Publisher distributes books
 - Patient consults Doctor
 - Household contains Members, some are Respondents, who have Children
 - » Usually associated with a role or verb
 - Part of, Special case of, Component of
 - Writes, distributes, consults

Relationship Properties

- Relationship has cardinality and status
 - » How many can be associated with each
 - One to Many e.g. Mother to Child, Household to Member, Patient to Disease Notification
 - One to One e.g. Birth record to Death record
 - Many to Many e.g. Patient to Consultant, Product to Purchase Order, Author to Publisher
 - » Many to Many relationships have to be resolved
 - Convert to the One to Many form, by introducing a new entity that represents the link between the two main entities
 - e.g. Consultation between Patient and Consultant, Order Item of Purchase Order, Contract between Author and Publisher
 - » Does the association have to exist?
 - Does the Mother of a Child have to exist in the database?
 - Does the Household have to exist for a Member
 - Related to Referential Integrity

Diagram Conventions

Two main conventions

 Crow's-feet (as shown)
 UML associations (arrows)

 Diagram Software

 MS Visio - general diagram system, special ERD (and UML) facilities in

- Professional version
- » Rational Rose, Together, Poseidon,
 - full UML systems with code generation

. . .

PFFPS - Main structure

PK

Q225_4 Q225 5 Q225_6 Q225 7 Q226 Q227 Interview CMC Birth CMC

PFFPSWID

<u>Q01</u>

CLUST HHM

H NO HHM

PK,FK1

PK,FK1

PK,FK1

Keys implement Relationships

- A Candidate Key is a set of attributes which, taken together, uniquely identify each tuple
 - » Several such Keys may exist, and at least one must always exist.
- The Primary Key for a relation is arbitrarily nominated from among these
 - » The selection of a Key should be based on the conceptual uniqueness of the attributes (i.e. on the Domains), not on the actual (subset of possible) values in a relation at any particular time
- A Foreign Key is defined over the same domain as a Primary Key, and so can provide a link between tuples
 - » The Cluster and Household number in a Household Member record together form the Foreign Key into the Household record

Properties of Keys

- Keys are usually implemented through Indexes
 - » An Index is a physical structure which stores information about the order and location of data values for a set of attributes, and which speeds up retrieval of subsets of records.
- A relationship can be Identifying
 - » If the Primary Key of the parent table is part of the Primary Key of the child table

Demonstration

Entities in Visio
 » PFFPS

- Some instances of an Entity may have additional attributes
 - » A Manager may have more information than other Employees
 - » In surveys, make conditional sections into separate entities
- Create additional Entities, with One to Optional One relationship to the original
 - » As in **PFFPS** selected women interviewed
- Where there are a set of alternatives, create a Category link
 - » E.g. an employee's Job Type may determine which additional information record is needed (but only one is allowed)

Normalisation

- All data values are Atomic
 - » Simple values, codes or measurements, no overloading
 - But complex values in Object-Relational DB, SQL:1999
- Remove redundant information
 - » Do not repeat things
 - Don't put household information with the members
 - Don't repeat information about people in different contexts
 - » Targeted at integrity
 - If something changes you only have to change the database in one place
 - Important for rapidly changing data, e.g. transaction processing
 - » If use requires redundancy, then achieve through Views
 - » Can be inefficient, so may de-normalise for implementation
 - Code may be needed to enforce integrity not an issue with static (statistical) data
 - Provide procedures to reconstruct derived tables when data changes

- Design for Statistical Metadata
 - » Can see value labels as a normalisation problem
 - » Or as requiring Entity design

Data with labels

Cluster	HID	НН	Q06	Gender	Q07	Q08	Status
77	10	1	1	Male	46	1	Currently Married
77	10	2	2	Female	46	1	Currently Married
77	10	3	2	Female	27	3	Divorced
77	10	4	1	Male	2	6	Neve Married
77	10	5	2	Female	21	6	Neve Married
77	10	6	2	Female	19	6	Neve Married
77	10	7	2	Female	17	6	Neve Married
77	10	8	1	Male	13	6	Neve Married

• Clearly wrong to store labels with the data

- » Inefficient, wastes storage through repeated strings
- » Integrity issues, wrong to change individual occurrences
- Labels are needed when information is displayed

Normalisation Approach

Cluster	HID	нн	Q06	Q07	Q08
77	10	1	1	46	1
77	10	2	2	46	1
77	10	3	2	27	3
77	10	4	1	2	6
77	10	5	2	21	6
77	10	6	2	19	6
77	10	7	2	17	6
77	10	8	1	13	6

Code	Label
1	Male
2	Female

Code	Label
1	Currently Married
2	Widowed
3	Divorced
4	Separated
5	Marria. Contract Not Lived Tog
6	Neve Married

- Take each type of label into a separate table
 - » Reconstitute the labelled data (for analysis) with views
- Lots of separate tables for labels
 - » Scaling problem
 - Same functionality for all such tables (use and management)

Entity Approach

- At the metadata level
 - » Variable and Code are both entities
 - Build metadata management functionality at this level
 - » Link to data in views
 - » Cf. Statistical Packages
- Example from PFFPS
 - » Will see more in HAP and other contexts

Field	Description	Missing	NA
Q06	Sex	9	
Q07	Age	99	
Q08	Marital Status	9	6
Q09	Education Level	9	3
Q10	Highest Class Passed	99	97
Q101H	Start Time (Hour)	99	
Q101M	Start Time (Minutes)	99	
Q102	Early life area	9	

Field	Code	Order	Label
Q06	1	1	Male
Q06	2	2	Female
Q08	1	1	Currently Married
Q08	2	2	Widowed
Q08	3	3	Divorced
Q08	4	4	Separated
Q08	5	5	Marria. Contract Not Lived Tog
Q08	6	6	Neve Married
Q09	1	1	Formal Schooling
Q09	2	2	Only Informal or Quranic Edu.
Q09	3	3	On Formal or Informal Educatio
Q09	8	4	Don't Know
Q102	1	1	City
Q102	2	2	Town
Q102	3	3	Village

Metadata tables in PFFPS

PFFPS - Metadata

- The metadata structure is not ideal
 - » Derived from and also supports data entry programme
 - » Includes physical layout for DE records
 - » Relates to records, not tables
- Used to produce printed Dictionary
 - » No data entry in Access, so constraints not used in this form
 - » Can be used to label outputs

Demonstration

- Entities in Visio

 » PFFPS Variable labels and codes (metadata)

 Forms in MS Access
 - » PFFPS Metadata

