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TECHNICAL ABSTRACT 
This deliverable D3.1 is a result of Work Package WP03 of the OPUS project. Work 
Package WP03 has as title: “Development of Meta Data Methods”. The specification 
of this Work Package from the project proposal is as follows. 

Objectives  

To extend current initiatives on statistical metadata (particularly metadata for statistical 
processes) to include the representation of statistical models, both in their underlying struc-
ture and as used for particular analyses or data syntheses.  

In particular, to provide a representation of algebraic model forms as an extension of existing 
expression representations, records of input data sources (including their versions), paramet-
ric assumptions used in model invocations (including distribution (Bayesian) assumptions for 
parameters) and links to synthesised information from model invocations. It will also draw on 
work for generic version control and audit trails. 

Description of work  

The work package will draw on existing (and ongoing) work by others on statistical metadata 
(particularly on process metadata), and on the related implementation activities for metadata 
within the LATS transport database project being undertaken in London. It will also draw on 
concurrent work in WP2 to identify the form of models to be considered. The work will com-
prise three interrelated activities.  

1. The development of a representation of the underlying form of statistical models as meta-
data, in a way that is accessible for review by people and execution by software. 
This will include algebraic expressions and relationships, distributions, variables and pa-
rameters, and will not assume that the model can be represented as a single component. 

2. The development of a representation of the way in which a model is used in the context of 
a statistical database.  
This will include recording the input information sources used, together with prior set-
tings or assumptions about parameters (including vague assumptions in the form of dis-
tributions and dependencies). The representation should allow the use of a model to be 
reviewed, revised and re-executed. Issues of version control will need to be addressed, since 
in general the input sources will be dynamically updated. 

3. The development of a representation of the results of using a model.  
This will include estimated parameter values (with suitable posterior support or precision 
information), and also synthesised information generated from the fitted model. The main 
body of the latter will be stored in standard structures (as for real data), but it is essential 
to retain the link to the model and the generation process. Issues of version control will 
arise again. 

In this report we discuss general issues about the nature of statistical modelling and 
about statistical metadata. This leads to an analysis of the conceptual structure of sta-
tistical analysis (of the form covered by the Opus project). 

We conclude that there are five essential elements for a statistical model. These are 
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1. Variables, which may or may not be observable, and for which we may or may 
not have any data. 

2. Parameters (characteristics of the underlying system), chosen because we are in-
terested in information about them, or because they are needed for our formula-
tion of the system. 

3. Mathematical relationships (of various forms) between the underlying constructs 
(variables and parameters) of the model, with parameters for the detailed specifi-
cation of the relationships. 

4. Probability distributions (from various families) for variables and parameters, 
with parameters and interdependencies. 

5. Information (prior knowledge) about the parameters in the model (for both the 
relationships and the distributions).  

From this analysis we have developed a proposal for a (metadata) structure for the 
representation of statistical modelling (including the model calibration process). This 
conceptual structure is presented as a model using UML. 
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EXECUTIVE SUMMARY 
This document is Deliverable D3.1 of the Fifth-Framework project (FP5) OPUS. The 
OPUS project aims to develop and demonstrate statistically sound methods of com-
bining datasets that each provide partial information on a single complex of underly-
ing variables. 

The expected practical result of application of the OPUS methodology is a calibrated 
probabilistic model of the problem domain at hand, with which it is possible to calcu-
late the most likely values of missing, unobserved, or unobservable quantities of the 
object system under study, with potentially important savings of time and resources. 

In this report we discuss general issues about the nature of statistical modelling and 
about statistical metadata. This leads to an analysis of the conceptual structure of sta-
tistical analysis (of the form covered by the Opus project), and hence to a proposal for 
a (metadata) structure for the representation of statistical models (including the 
model calibration process). This structure is presented as a conceptual model using 
UML. 
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1. INTRODUCTION AND FRAMEWORK 

1.1 About OPUS 

1.1.1 Background 

OPUS is a large information management research project, supported by Eurostat as 
part of the European Commission’s Information Society Technologies (IST) Pro-
gramme. The overall aim of the OPUS project is to enable the coherent combination 
and use of data from disparate, cross-sectoral sources, and so contribute to improved 
decision making in the public and private sector within Europe. The research is fo-
cused on developing an innovative methodology, incorporating statistical and data-
base systems. Transport planning is a prominent example of a topic that uses 
multiple sources of data, and will be the main test case for OPUS, but the cross-
sectoral nature of the research will be demonstrated through the inclusion of an ap-
plication in the field of health information as another example. 

To meet the needs for comprehensive information on socio-economic systems such as 
urban and regional transport planning, and in the health services sector, data from 
diverse sources (e.g. conventional sample surveys, census records, operational data 
streams and data generated by IST systems themselves) must be combined. There is 
currently no appropriate developed methodology that enables the combination of 
complex spatial, temporal and real time data in a statistically coherent fashion. The 
aim of the project is to develop, apply and evaluate such a methodology. OPUS will 
develop a general statistical framework for combining diverse data sources and spe-
cialise this framework to estimate indicators of mobility such as travel patterns over 
space and time for different groups of people. The project will undertake pilot and 
feasibility study applications in London, Zurich, Milan, and on a national level in 
Belgium. Methods for extending the framework to information aspects of the health 
domain will also be investigated. 

The benefits of OPUS will be: 

• Improved estimation of detailed travel demand, using all available information; 

• Avoidance of simplified combination of data that can give erroneous estimates; 

• Indicators of data quality, to provide guidance for new data collection; 

• A framework for managing data from rolling survey programmes; 

• Better understanding of the role of variability and uncertainty in results and 
models; 

• Avoidance of confusion from different, apparently conflicting, estimates of the 
same quantity; 

• A generalised methodology for other domains of interest. 

 

The participants in the OPUS project are as follows: 
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Research Organisations 

• CTS (Centre for Transport Studies, Department of Civil and Environmental Engi-
neering, Imperial College London), United Kingdom – Lead Partner 

• DEPH (Department of Epidemiology and Public Health, Imperial College Lon-
don), United Kingdom 

• ETHZ (Institut für Verkehrsplanung, Transporttechnik, Strassen- und 
Eisenbahnbau), Switzerland 

• FUNDP, Transport Research Group (Facultés Universitaires Notre-Dame de la 
Paix), Belgium 

 

Practitioners 

• Minnerva Ltd., United Kingdom. 

• Survey and Statistical Computing, United Kingdom. 

• Katalysis Ltd., United Kingdom. 

• PTV AG, Germany 

• Systematica, Italy. 

• Oxford Systematics, Australia: Peer Reviewer 

 

Public Bodies 

• Transport for London (TfL), United Kingdom. 

• World Health Organisation (WHO), Italy. 

1.1.2 Objectives of the OPUS project 

To meet the needs for comprehensive information on socio-economic systems such as 
urban and regional transport planning, and in the health services sector, data from 
diverse sources (e.g. conventional sample surveys, census records, operational data 
streams and data generated by IST systems themselves) must be combined. There is 
currently no appropriate developed methodology that enables the combination of 
complex spatial, temporal and real time data in a statistically coherent fashion.  

The overall aim of the proposed project is to develop, apply and evaluate such meth-
odologies, taking as a specific case study the transport planning sector. The specific 
objectives of the study are: 

• To develop a generic statistical framework to enable the optimal combination of 
complex spatial and temporal data from survey and non-survey sources. This 
framework will specify how to optimally estimate the underlying population pa-
rameters of interest taking into account the structural relationships between the 
different measured data quantities and the sampling and non-sampling errors as-
sociated with the respective data collection processes. It is envisaged that the 
framework will be broadly Bayesian in nature. The framework will make no spe-
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cific assumptions regarding the particular structural and sampling/non-sampling 
errors and will thus be relevant to a wide range of application domains.  

• To apply the generic framework within the field of urban and regional transport 
planning. This will involve the definition of specific structural relationships 
amongst measured quantities and the characterisation of sampling/non-sampling 
errors, based on domain knowledge from the field of transport planning.  

• To develop the necessary database and estimation software to enable the applica-
tion of the statistical framework in a number of case study areas.  

• To undertake a major pilot application study in London, focusing on the deriva-
tion of indicators of the mobility and the performance of transport policy meas-
ures.  

• In parallel, to investigate the feasibility of applying the framework and method-
ologies developed both in other transport planning contexts and in other proxi-
mate domains, specifically environmental management and social statistics. 

• Based on the experience gained in the pilot application and the feasibility studies, 
to evaluate the performance of the proposed methods and to define the scope and 
approach for wider applications in relevant domains including environmental 
management and health care. 

• To disseminate the results to the relevant academic and practitioner communities.  

1.1.3 Motivation 

OPUS addresses the situation in which the analyst must combine data from a variety 
of different data sources to obtain a best estimate, or a fuller understanding, of a sys-
tem. Such a situation can arise for a number of reasons including: 

• No single source contains sufficient information by itself; or 

• Multiple sources naturally arise (e.g. through observations at different levels of 
spatial or temporal aggregation or by means of different survey methods), result-
ing in a need to reconcile potentially conflicting estimations; or 

• The need to update or transfer an existing set of data and parameter estimates 
when additional information becomes available.  

Problems of combining data from different sources to produce consistent estimates of 
underlying population parameters arise in many fields of study including environ-
mental monitoring, epidemiology and public health, earth observation, geographic 
information and navigation systems, transport and logistics, and economic and social 
statistics. Although the risks of using ad hoc combination rules and procedures are 
well understood, there are nevertheless many examples from practice in which just 
such approaches are still used. This reflects the fact that, although relatively straight-
forward methods exist for simple cases, there does not exist a coherent and well de-
veloped set of applicable methods capable of dealing with the full range of data 
combination problems, including factors such as: 

• Data sources that provide both direct and indirect information on the relevant 
population parameters 
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• Data that are presented at different levels of aggregation 

• Data sources with differing levels of statistical precision or user confidence 

• Data that overlap, but that may provide different or conflicting information 

• Gaps in the data observations 

• The issues raised by the aging of sample survey data and the consequent need for 
updating 

• Accommodating the updating sources 

• The effect of sampling and non-sampling errors (including survey non-response 
and other sources of missing data) 

• The opportunities presented by new data streams from IST systems 

The key scientific objective of the project is to develop a generic statistical framework 
for the optimal combination of complex spatial and temporal data from survey and 
non-survey sources. The framework will be sufficiently abstract to be applicable to a 
wide range of potential domains. 

Associated with this overall objective is the need for a suitable representation of the 
statistical metadata that is used for the specification and application of such a frame-
work. That is the immediate objective of this report. 

1.1.4 Subject areas 

OPUS provides a generic approach but, in each case, it is necessary to make this ap-
proach specific to the particular area of interest (whether the area is geographical or 
topical in nature). A particular test-bed is transport in London, but studies will be 
made for transport in Belgium, Switzerland, and Italy, as well as health studies. 

1.2 OPUS Project Work Package WP3 
This section summarises the specifications for this work package. 

1.2.1 Objectives  

To extend current initiatives on statistical metadata (particularly metadata for statisti-
cal processes) to include the representation of statistical models, both in their under-
lying structure and as used for particular analyses or data syntheses.  

In particular, to provide  

• a representation of algebraic model forms as an extension of existing expression 
representations,  

• records of input data sources (including their versions),  

• parametric assumptions used in model invocations (including distribution 
(Bayesian) assumptions for parameters) and  

• links to synthesised information from model invocations.  

It will also draw on work for generic version control and audit trails. 



OPUS D3.1 Metadata for Statistical Models Page 12 
IST-2001-32471 Deliverable D3.1  version 1.4 Date 20 April 2005 
 

1.2.2 Description of work  

The work package will draw on existing (and ongoing) work by others on statistical 
metadata (particularly on process metadata), and on the related implementation ac-
tivities for metadata within the LATS transport database project being undertaken in 
London. It will also draw on concurrent work in WP2 to identify the form of models 
to be considered. The work will comprise three interrelated activities.  

1. The development of a representation of the underlying form of statistical models 
as metadata, in a way that is accessible for review by people and execution by 
software. 
This will include algebraic expressions and relationships, distributions, variables 
and parameters, and will not assume that the model can be represented as a sin-
gle component. 

2. The development of a representation of the way in which a model is used in the 
context of a statistical database.  
This will include recording the input information sources used, together with 
prior settings or assumptions about parameters (including vague assumptions in 
the form of distributions and dependencies). The representation should allow the 
use of a model to be reviewed, revised and re-executed. Issues of version control 
will need to be addressed, since in general the input sources will be dynamically 
updated. 

3. The development of a representation of the results of using a model.  
This will include estimated parameter values (with suitable posterior support or 
precision information), and also synthesised information generated from the fit-
ted model. The main body of the latter will be stored in standard structures (as for 
real data), but it is essential to retain the link to the model and the generation 
process. Issues of version control will arise again. 

1.2.3 Deliverables  

D3.1 Proposals for Metadata for Generic Support of Statistical Modelling in Statistical 
Databases 

D3.2 Specifications for the Extension of the LATS Database System for the Transport 
Domain  

1.3 Objectives of Deliverable D3.1 
The key scientific objective of the Opus project is to develop a generic statistical 
framework for the optimal combination of complex spatial and temporal data from 
survey and non-survey sources. The framework will be sufficiently abstract to be ap-
plicable to a wide range of potential domains. 

Associated with this objective is the need for a suitable representation of the statisti-
cal metadata that is used for the specification and application of such a framework. 
That is the immediate objective of this document. 

The specific objectives of this deliverable are to: 



OPUS D3.1 Metadata for Statistical Models Page 13 
IST-2001-32471 Deliverable D3.1  version 1.4 Date 20 April 2005 
 

1. Analyse the generic requirements for the representation of statistical models (and 
associated specification and fitting processes) of the general type applicable to the 
Opus project. 

2. Investigate existing systems and proposals for the representation of statistical 
structures and associated metadata to identify elements that support and can be 
used by modelling processes. 

3. Make proposals about the generic structures and functionality needed for the rep-
resentation of models and processes, so as to support both the implementation of 
modelling systems and the use of the results of these systems. 

1.4 Results presented in Deliverable D3.1 
The following results are presented: 

1. Background information about the approaches to statistical metadata and statisti-
cal methodology that motivate the approach of the report. 

2. An analysis of the nature of statistical modelling and the associated components 
of model specifications. 

3. Metadata structures (shown as UML diagrams) that might be suitable for the 
management of models and model fitting processes. 

1.5 Relation with the OPUS Life-cycle 
The objective of the opus project is to develop a methodology for the integration of 
multiple datasets in complex situations. Work package three supports this, through 
the development of models for the data structures and processes that are needed to 
support the implementation of the generic methodology of the project. This work 
package is dependent on the project is a whole, and particularly on work package 
two, for specifying the types of methodology and statistical method that need to be 
covered as meta data. The development of methodology is not of itself dependent on 
work package three, though it is expected that consideration of data structures at an 
abstract level will contribute to the thinking about the generic methodology. How-
ever, the impact of this work package is expected to be felt most in the implementa-
tion efforts that will be part of the trials that follow development of the generic 
methodology. 

1.6 Structure of the Deliverable 
The following chapter contains a discussion of the general nature of statistical model-
ling as approached by the Opus project, and finishes with some basic ideas about sta-
tistical metadata. In this the distinction between different forms of model (for 
example statistical models and system models) is brought out. Note is also taken of 
the different levels of abstraction that need to be addressed at different times. 

The following chapter is background information about the development of impor-
tant ideas about statistical metadata over the past decade, with a bit of earlier history. 
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This is followed by an extended discussion of the components of a statistical model 
and the modelling process, culminating in a proposal for a conceptual structure for 
the representation of statistical models (in the form of a UML model). 

The next chapter extends the discussion and structure to cover the model fitting (cali-
bration) process, and touches on the representation of the links between results gen-
erated from a model and the model that is their source. 

Final chapters summarise previous sections. 

It should be noted that this report concerns itself with a very abstract view of statisti-
cal modelling. Practical, implementation and operationalisation issues are very im-
portant, but are not (in general) addressed here. These matters will be addressed in 
future documents from the project, and some may feed back to leaven a later version 
of this report. 
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2. THE OPUS APPROACH TO MODELLING 

2.1 Introduction 

2.1.1 Types of Model 

Models are abstractions from real-world situations, designed to support some par-
ticular context. In this report we are concerned with two different but related versions 
of this concept. 

1. Statistical Modelling. This is the process of determining and calibrating a suitable 
representation (model) for the underlying system for which statistical data has 
been collected. Different systems and data require different models, and models 
should be updated when new data arises or new understanding is recognised. 
The Opus methodology focuses on the construction and calibration of such mod-
els. 

2. Metadata Modelling. Statistical Metadata is used to describe, document and con-
trol statistical systems. A model for statistical metadata is a definition of the struc-
tures and functionality that are needed to describe statistical systems, including 
statistical models. This type of modelling is close to the computer science ideas of 
system and data modelling, and draws on those ideas. This report is an explora-
tion of the (single) metadata model that is needed to be able to describe and 
document statistical models (in general). 

2.1.2 The role of Modelling 

Models are designed to meet a particular need in a particular context. Thus the form 
and roles of models can be very different. Some examples may help to show some of 
the range. 

Conceptual Models are an attempt to form a frame of reference for some domain or col-
lection of constructs or concepts. Where concerned with terminology or names (and 
so sometimes called Ontological Models) they are often similar to classification struc-
tures, and such structures (for example the International Classification of Diseases – 
ICD – or NACE, the General Industrial Classification of Economic Activities within 
the European Communities) can be seen as conceptual or ontological models. Other 
conceptual models may be concerned with suitable structures for organising ways of 
thinking about a domain, and the models presented in this report are generally of 
that nature. 

The Relational Database Model is a formal specification of the structures and behaviour 
for databases formed from sets of rectangular tables. This provides a conceptual 
framework for thinking about databases (one that is widely used) but is also suffi-
ciently detailed and precise to be the basis for the implementation of many database 
software systems. 
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The Object Oriented approach1 is an alternative (more general) way of thinking about 
databases and program structures (an alternative paradigm), built using a different 
set of primitive constructs, assumptions and conventions. 

The statistical Generalised Linear Model is a mathematical specification of the way in 
which a set of predictor variables influence a dependent variable, together with the 
form of the variability about that relationship. This model is very flexible and is 
widely used for estimating statistical relationships (using suitable software to cali-
brate the model to a particular data set), and for discussing the potential form of such 
relationships. Of course, there are many situations where the GML is not an appro-
priate form of model. 

Structural Models concentrate on the objects and attributes that are used to represent 
information structures. This is necessary for the exchange of information between 
systems, but needs to be accompanied by clear specifications of the intended purpose 
and use of the various elements. Inconsistent interpretation by independent users or 
implementers working with such a structure is a continuing concern, unless some en-
forcement mechanism can be specified and implemented. Structural models can be 
conceptual, in that they provide a way of thinking about the appropriate structures 
for some context, or they can be physical, and so present the actual structures needed 
for some particular system. 

With statistical metadata we are looking for models that allow us to interchange in-
formation between processes and systems and that provide a stable conceptual 
framework for users to work with complex information structures across processes 
and systems. We want to support users of statistical systems, support the automation 
of statistical processes, and exchange information between systems and processes. 

We can have more than one model, focussing on different parts of the statistical proc-
ess, but they should dovetail together when a wider picture is needed. And we 
should aim to get suitable models accepted as standards, agreed and used across the 
target domain. 

2.1.3 Elements of Modelling 

To be functional and useful for people and software, our models must provide formal 
specifications of components and relationships, in a way that avoids misinterpreta-
tion. They must address:  

• Structure: how are the elements organised, how are elements grouped and re-
lated, what attributes are needed for each type of element. 

• Semantics: what do the elements represent, what rules and constraints apply to 
their attribute values, to their states and to the way in which they are used. 

• Methods: specifications of algorithms and processes that apply to the elements 
and the data they refer to. 

                                                      
1  A brief description of the essential elements of the Object Oriented Paradigm is reproduced in an appendix. 
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• Concepts: complete and detailed definitions of the terms and concepts that are the 
subjects and objects covered by the model and of the relationships between them. 
In some situations this may correspond to the idea of a thesaurus. 

To construct models quickly and accurately we also need a modelling framework or 
workbench, which provides generic building blocks for model components and tools 
to support the design process. 

For this project we have chosen to use the Universal Modelling Language (UML) to 
construct and express the structural models that we develop. The UML diagrams 
presented here were developed using the UML component of the Microsoft Visio 
2003 drawing package. 

2.1.4 Levels of Model 

Models exist at various levels of abstraction, and confusion can arise from not recog-
nising the level to which a particular construct contributes, or at which a discussion 
about the model is taking place. 

For example, the metadata about a particular survey forms an instance of the more 
general model that can be used to describe other surveys (of the same general type). 
This in turn will draw on both a conceptual model of the application domains for 
which the model is appropriate, and on a more abstract model of statistical processes 
and surveys in general. These abstract models of statistics are sometimes called meta-
models, and are themselves constructed as instances of an even more abstract model 
for the process of defining models. 

Within Opus we are concerned with different levels of abstraction for the statistical 
models we will use. These extend from the very general description of an application 
domain (the GAPM, or Generalised a Priori Model) that sets out the underlying rela-
tionships and system knowledge, through to the much more specific and specialised 
models that are to be calibrated against available data to investigate a particular char-
acteristic of the system. 

Once grasped, the fact that there are different levels of model does not need to cause 
confusion, but the failure to recognise the levels can be very confusing. 

2.2 Modelling for Metadata 

2.2.1 Statistical Metadata 

With Statistical Metadata we are mostly concerned with software to support the 
processing and analysis of statistical information. Models provide the opportunity to 
specify how information can be shared between stages of processes (so that later 
stages can make use of information entered in earlier ones) and how information and 
specifications can be moved between independent applications. Because we are sup-
porting the development and use of software, our models need to be detailed and 
precise in their specification of the structures and semantics of the information. How-
ever, the model also determines a conceptual framework for process designers and 
software users, so they must be able to view elements of or generalisations from a 
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model, with less detail than is needed by software developers. Furthermore, when 
developing a model we need to work with domain and subject specialists to discover 
their needs and to help them to agree on model components and structures. These 
people will probably need assistance to express this knowledge in ways and with suf-
ficient precision for use in the model, and will need help in understanding the model 
representation of their knowledge, so that they can confirm that the model represents 
this knowledge correctly. 

We use the following definition of statistical metadata. 

Statistical Metadata is any information that is needed by people or systems to make 
proper and correct use of the real statistical data, in terms of capturing, reading, process-
ing, interpreting, analysing and presenting the information (or any other use).  In other 
words, statistical metadata is anything that might influence or control the way in which 
the core information is used by people or software.  

It extends from very specific technical information, used, for example, to ensure that 
a data file is read correctly, or that a category in a summary table has the right label, 
or that the design of a sample is correctly taken into account when computing a sta-
tistical summary, right through to descriptive (intentional) information, for example 
about why a question was worded in a particular way or why a particular selection 
criterion was used for a sample. 

Thus, metadata includes (but is not limited to) population definitions, sample de-
signs, file descriptions and database schemas, codebooks and classification structures, 
processing details, checks, transformation, weighting, fieldwork reports and notes, 
conceptual motivations, table designs and layouts. 

The implications of this definition are explored in the next chapter. 

2.2.2 Acknowledgements 

Many of the metadata ideas presented in this chapter have been expounded and dis-
cussed during the MetaNet project (see [MetaNet]), particularly in work groups 1 and 
2 and at the final conference. Of particular importance is work with Chris Nelson, of 
Dimension EDI, but the current author takes full responsibility for all the ideas and 
opinions expressed here. 

2.3 A generic approach to Statistical Modelling 
This section sets out my personal view about how a statistical modelling framework 
might look – at a very generic level. It omits all details (and these are very important 
in practice, particularly for selling the approach to domain specialists), and some 
other generic approach might be equally appropriate.  

2.3.1 Statistical frame of reference 

The theoretical approach of OPUS is Bayesian in nature, implying: 

• An a priori starting point (model) is constructed, including implicit representa-
tions of confidence in data sources (through prior distributions) and modelling 
assumptions; 
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• Additional information is supplied and used to update the model; 

• The updated model can be used to provide coherent estimators (with estimates of 
reliability) for any area that it covers, including combinations of factors for which 
no data were actually observed. For example it could provide estimates for pas-
sengers leaving a particular railway station in a period when no survey informa-
tion was collected, but overall passenger loading is known; 

• As well as parameter estimates, it is possible to use to model to synthesize simu-
lated data sets that demonstrate behaviour of the system, including its variability. 

Model
Includes Prior 
information.

Model Fit
Posterior information 

for all model 
components.

Results
Parameter estimates, 

synthetic data

Synthetic 
Dataset

Model Calibration
Eg. MCMC, EM, etc.

From a model fit we can generate data based on 
the posterior distributions, including data variability. 

Some factors (State Variables) may be fixed 
to explore particular aspects of the fit.

Datasets

 
There is scope within the project for the reliance on Bayesian methods to be supple-
mented with other techniques without altering the general vision. For the present, it 
is assumed that OPUS will implement its approach using MCMC (Markov Chain 
Monte Carlo) simulation techniques already widely used in statistical studies, but this 
is subject to the theoretical phase of work that starts the project. 

2.3.2 General Approach 

The general algorithmic structure of the approach is an application of the EM (Expec-
tation – Maximisation) algorithm. This can be used in complex models where the 
model is too complicated to fit all at once, but it can be partitioned into components, 
each of which can be optimised. The problem is that all the components depend on 
all the other ones. The solution is to optimise over one component at a time, while 
holding all the others fixed at (hopefully good) guesses. Then, using the optimised 
values from the current component, we move on to optimising the next one. This con-
tinues round all the components, and then iterates until stability is reached. This can 
be computationally intensive, but is within the capabilities of modern processors. 

As to the model itself, we should investigate whether a very generic approach is pos-
sible. I acknowledge that there may be problems in presenting a more generic form, 
but at least we could think that way. For example, the Normal and Poisson distribu-
tions are often used, but these are just special cases of much more general classes of 
distributions, so perhaps they could be given as examples, rather than being built in 
as assumptions.  
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2.4 A Model for Statistical Modelling 

2.4.1 Introduction 

In transport (for example) we have specific needs to integrate multiple, partial data-
sets, but the motivation is to approach the whole area in a much more general way, 
since similar problems arise in many domains. Applications always require domain 
knowledge, so we treat these as case or feasibility studies in which we explore the 
problems that arise when the methodology is applied. 

2.4.2 Model Structure 

The heart of the model is a specification in mathematical terms (i.e. largely algebra) of 
the factors that influence traffic flows (or some other system being studied) and the 
way in which they interact in their influence. Of course, the particular factors and 
form of relationships are specific to the problem we are addressing.  

All the factors will have distributions associated with them (i.e. they are not necessar-
ily assumed to be fixed), and all the distributions and relationships will have parame-
ters.  

All the parameters have prior distributions (representing prior knowledge or uncer-
tainty), which will be more or less informative depending on what experience we can 
bring to the context and the understanding of the model.  

In addition the model can have constraints, which in general will be distributional 
(giving the likelihood of a particular arrangement), though they can be explicit (only 
particular arrangements are valid).  

2.4.3 Bayesian Approach 

In simple statistical analysis we represent the uncertainty associated with an estimate 
of a parameter by calculating a confidence interval. For different levels of confidence 
we obtain different intervals (or limits) and we can represent the set all limits as a dis-
tribution over the possible parameter values. In many cases this will take the shape of 
a Normal distribution, because the Normal distribution is assumed for the data. 

Although we can represent our uncertainty about a parameter as a distribution, this 
does not mean that the parameter is a random variable. Rather, it is a fixed property 
of the reality about which we have collected data, and it is our uncertainty that is rep-
resented by the distribution. 

We can take the idea further, and represent any uncertainty with a distribution. Thus 
we do not require that the distribution is derived from data, we can simply invent it. 
Of course, it is not sensible to do this without some prior knowledge, or justification, 
to support the particular choices that we make. Where we do have knowledge about 
the parameter we tend to talk about knowledge rather them uncertainty distribu-
tions. 

With uncertainty represented in the form of distributions, we can draw on what is 
known as Bayesian Methodology for working with our models. 
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Bayes’ theorem is a simple statement about conditional probability. It comes from the 
recognition that a joint probability can be written as the product of conditional and 
marginal probabilities. 

( )Β∧ΑΡ  = ( ) ( )ΒΡ×ΒΑΡ  

Bayes’ original use of this was to show how to calculate conditional probabilities, as: 

( )ΒΑΡ  = 
( )

( )ΒΡ
Β∧ΑΡ

 

In contrast, Bayesian Methodology uses the first formula twice to show how to re-
verse the ordering of the conditioning. 

( )ΒΑΡ  = 
( ) ( )

( )ΒΡ

ΑΡ×ΑΒΡ
 

If we now substitute a parameter θ for A and consider B to be our data X, we have: 

( )ΧΡ θ  = 
( ) ( )

( )ΧΡ
Ρ×ΧΡ θθ

 

This formula says that where we have prior knowledge about the parameter θ, we 
can update this knowledge if we also know the data distribution depends on the pa-
rameter, obtaining the posterior knowledge distribution. 

Usually the mathematical form of the distributions is too complex to allow explicit 
determination of the posterior distribution, so we resort to simulation methods such 
as MCMC, which provide an empirical estimate of the distribution. 

2.4.4 Model Uncertainty 

As well as uncertainty about the values of parameters in the model, we may be uncer-
tain about the appropriate form for the model. We can cope with this by introducing 
additional parameters to control the functional form of the mood, in addition to those 
that relate directly to the system of interest. 

We thus represent uncertainty in the model form or structure by choosing general-
ised forms of distributions and relationships, and associating prior distributions with 
those parameters that determine the specific forms of the distributions and relation-
ships. Thus (for example) instead of specifying the Normal distribution for a particu-
lar component of the model we might specify the Exponential Class of distributions, 
and define a prior distribution (perhaps favouring the normal form) over the parame-
ter(s) that determine the particular form of the distribution that is appropriate. 

2.4.5 Model Fitting 

We then calibrate the model using whatever data is available to us.  

For any set of observed data the model will imply a distribution of such observations 
(based on the parameters and their prior distributions). The calibration process con-
sists of updating the distributions associated with the parameters (obtaining posterior 
distributions) so as to optimise the fit between the predicted distribution of observa-
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tions and the actual one (this is where the MCMC approach may be needed, for in-
tractable model components).  

This becomes one step in the EM algorithm, and we continue with other datasets, and 
iterate to stability.  

Note that there is no problem about having more than one set of data about the same 
subject – they are treated equally, as independent steps in the algorithm. Also, there 
is no problem when new data arrives. You can do just one more EM step using the 
new data, which will update the current best estimates in the light of the new data. 
Better still, rerun the whole EM process, incorporating the new data – because we 
will start with the current best fit the iteration should be fast, unless the new data is 
significantly in conflict with previous information.  

2.4.6 Model Evaluation 

The posterior distribution associated with each parameter (after calibrating the 
model) encapsulates the information available about the parameter, so we can always 
make statements about the degree of confidence we have in any parameter value 
(though this is dependent to some extent on the initial (prior) assumptions). Where 
nothing in the data tells us anything about a particular parameter, that parameter will 
retain its prior distribution unaltered.  

2.4.7 Weights 

Each dataset will have weights, which internally tell us about the relative importance 
of each observation (with respect to the underlying population distribution) and ex-
ternally (in their overall total) about the importance or confidence associated with the 
dataset. Note that adjustment of the external weights gives us a mechanism for ‘age-
ing’ the contribution of a dataset to the model – alternatively we can introduce ex-
plicit time-varying components in the model and estimate these.  

2.4.8 Using the Fitted Model 

Once a model has been fitted (calibrated) it needs to be used to address problems of 
practical importance. So far there has been no mention of synthesised or generated 
data. That is because we do not need any for the calibration process. We transform 
the model to the data for calibration, rather than the other way round. (It’s probably 
not quite as simple as that sounds!) The model contains everything we need to know 
to represent the processes of interest. 

However, the information in the model is not necessarily in the form we are inter-
ested in. So we will need to project information out of the model into the form of di-
rect interest to users.  

For example, a flow on a segment by a mode under some set of conditions (time, 
weather, etc) will be derivable as some function of relevant parameters. The model 
will yield a distribution for the information of interest, which encapsulates the vari-
ability inherent in the model plus the uncertainty (distributions) associated with the 
parameters. From this we can estimate particular values or relationships, accompa-
nied by estimates of their variability, or we can simulate the behaviour of some sys-
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tem (component of the model) under suitable assumptions about fixed or varying fac-
tors.  

Note that the distributions of parameters are not (in general) independent and the 
functions can be complex, so the output distribution will probably have to be gener-
ated by simulation (and different items of output information will not be independ-
ent either).  

2.4.9 Data and Models 

Models are not dependent on the availability of related data. This may seem odd, and 
it is certainly true that a model is unlikely to tell us anything new unless there is some 
related data. 

However, the importance of this idea is that the formulation of a model does not need 
to be constrained to the concepts or variables that are widely available in datasets. If 
we have no data about some component of a model, then we rely entirely on our 
prior knowledge about it. But we have not lost anything by including the component 
in the model. 

In a related way, it does not matter that some datasets have less detail than others. 
We do not need to reduce all datasets to the lowest common denominator, throwing 
away detail that is not available in all datasets. Rather, each dataset contributes what 
it can to the model, and the model copes with the different detail available in differ-
ent datasets. 

2.5 The Opus Methodology 

2.5.1 Components 

The following diagram was originally prepared as a poster to present a summary of 
the Opus methodology. It draws on the general approach to modelling described 
above. However, while still very generalised, it is more specific than this general 
modelling approach, because it focuses on the situation of Data Integration, and the 
methodology needed to support and implement this. 
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Complex System
It is assumed that most of the processes within the 

system are well-understood (at least qualitatively), but 
that the system is too complex to be completely 

observed or analysed directly.

For Opus the main example will be Transport in 
London, including Bus, Underground, Overground 

Rail and private car transport. 
Other transport systems and some Health systems 

will also be studied in less detail.

Statistical Framework
This covers generic Statistical Modeling 
techniques, such as Graphical Modeling 
and Bayesian Methods, as well as model 

fitting (calibration and estimation) methods 
such as MCMC, EM, etc.

See D 2.1

Application Domain
Examples used in Opus are 

Health and Transport

Generic Conceptual (a Priori) 
Model for Domain (GAPM)

Covers all aspects of the domain, but at an abstract level, 
independent of particular systems or data.

It is essential that the basic characteristics of the model are 
acceptable to the domain practitioners

See D 4.1

Metadata for Model and Result 
Management
Must be able to represent

Generic Models, including links to conceptual variables
Model forms specialised for specific systems
Data sets, for use in models and fits
Model applications, including links to actual data and prior model fits
Model fits, in terms of posterior distributions, sufficient to derive and 
test parameter estimates and generate simulated data
Version control, for updating of fits with additional data

See D 3.1

Specialised Model Forms for 
the system

These will select out and specialise the areas of the GAPM 
that are necessary or relevant for the specific system, add 

prior knowledge and detail, as needed for the particular 
applications that are envisaged and the data that are 

available.
For London this will include the transport network, routing, 
timetables, census population data, land use information, 
etc., plus knowledge gained from experts and previous 

analysis.
All components of the model should be covered, either by 

prior knowledge (of relationship forms and parameters, with 
uncertainty) or by some data.

Specific Model
Detailed specification of a particular model 

and the datasets that it uses.
This must be complete with respect to the 

purpose of the model (even though 
complete data is not available).

It includes prior information.

Model Fit
The result of calibrating a specific model 

against a specific collection of data.
Essentially, this is a set of posterior 
distributions for the chosen model.

Model
Formulated using Statistical 

Framework.
Includes Prior information.

Datasets
Always more than one, addressing 
different (sometimes overlapping) 

parts of the model, though probably 
not all.

Model Calibration
Iterative (over the datasets) 

calibration of the model.
Eg. MCMC, EM, etc.

Model Fit
Posterior information for all model 

components.

Data Integration

Domain Practitioner
Responsible to operation (or design and 

planning) of the system. 
Dependent on data about the system for 

management and control. 
Often confused by multiple datasets which, 
when analysed separately, give results that 

appear to be inconsistent. 
We assume that this is in part a lack of 

understanding of inherent variability, and in part 
a failure to include adequate model 

components.

Result Presentation
Practitioners are not familiar with Bayesian Posterior distributions from 

models as working information. 
Various issues to be addressed:

Goodness of Fit: through changes in prior and posterior distributions 
for parameters, observed and predicted distributions for data, dataset 
likelihood, etc.
Estimation: posterior means and other moments of model parameters, 
and of factors (contrasts) relevant to the application.
Graphics: for display of relationships and interactions.

Key to Arrows

Dependency: Source object depends on (some aspect of) 
the target. 

Generalisation: The source object is a specialised form of 
the target.

Elaboration: The source object is a specific instance of the 
more general target.

Composition: The target object includes one or more 
instances of the sources (or information about them).

Data and Process Flow

Partial Datasets
Complete coverage of the system is impossible.

New data (and sometimes datasets) arise continually.
Data in London includes 

LATS: Large decennial survey with Household interviews about 
behaviour, including travel diaries, on-mode passenger and 

roadside driver interviews. 
Cordon traffic counts (into central area, one day every year).
Interviews with passengers in stations and on buses (regular 

schedule). 
Station entry and exit counts (continuous sample), 

station ticket gate counts, and 
automatic road movement sensors.

Information about weather, planned events (eg sport), and 
unplanned events (eg accidents), is also relevant.

Simulated Dataset
From a model fit we can generate data 

based on the posterior distributions, 
including data variability. Some factors (State 
Variables) may be fixed to explore particular 

aspects of the fit.
Note that when this data is analysed, 

aspects of the fit are recovered.

 

2.5.2 Metadata for the Methodology 

The current report is mainly concerned with finding a representation for the proc-
esses in the central circle (the Data Integration processes), and with the representation 
of the metadata that controls and records these processes. 



OPUS D3.1 Metadata for Statistical Models Page 25 
IST-2001-32471 Deliverable D3.1  version 1.4 Date 20 April 2005 
 

3. REVIEW OF BACKGROUND AND CONCEPTS 

3.1 What is Statistical Metadata? 

3.1.1 Beginnings 

Statistical Metadata started with the first general purpose statistical packages in the 
1960’s, software such as BMD, XTab and SPSS. These all needed information about 
‘Variables’: which punch card columns (or paper tape fields) contained information 
about which statistical measurement, had the values been scaled, what range of val-
ues was allowed, had any special codes been used (for example to indicate missing 
data), what is a suitable label for the measurement, what were the meanings of the 
codes used for classification variables, and so on? 

Quickly the idea of the Data Dictionary (or, sometimes, the Codebook) gained accep-
tance. This was intended to contain all the information about the data that was 
needed to perform statistical analysis, but which was not the actual data. 

The term Metadata was coined in the early 1970’s. The first use was probably in the 
1973 PhD thesis of Bo Sundgren (subsequently with Statistics Sweden for many 
years). The construction draws on the Greek word meta, meaning ‘beside’ or ‘with’, so 
that ‘metadata’ is ‘data beside data’, or, more usually, ‘data about data’. This is 
clearly linked to older constructions, such as ‘metamorphic’, ‘metaphor’ and ‘meta-
physics’. It has also been used for later constructions, such as Statistical Meta-
analysis, ‘the analysis of analyses’. 

3.1.2 Definition 

Statistical Metadata is concerned with support for the processing and analysis of sta-
tistical information.  

We use the following definition. 

Statistical Metadata is any information that is needed by people or systems to make 
proper and correct use of the real statistical data, in terms of capturing, reading, process-
ing, interpreting, analysing and presenting the information (or any other use).  In other 
words, statistical metadata is anything that might influence or control the way in which 
the core information is used by people or software.  

This definition extends from very specific technical information, used, for example, to 
ensure that a data file is read correctly, or that a category in a summary table has the 
right label, or that the design of a sample is correctly taken into account when com-
puting a statistical summary, right through to descriptive (intentional) information, 
for example about why a question was worded in a particular way or why a particu-
lar selection criterion was used for a sample. 

Thus, metadata includes (but is not limited to) population definitions, sample de-
signs, file descriptions and database schemas, codebooks and classification structures, 
processing details, checks, transformation, weighting, fieldwork reports and notes, 
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conceptual motivations, table designs and layouts. In this particular report we are 
concerned with metadata for the specification, fitting and use of statistical modelling. 

Metadata is never new information, but must always already exist in some form. 
Whenever a questionnaire is designed, the motivation behind questions needed to be 
thought through, the coding needs to be determined, and the sample design must be 
elaborated. What is new about the metadata idea is that the information must be for-
malised, organised, and made accessible. Metadata supports the task of making in-
formation available, so that it can be communicated from the place where it is first 
created to those places where it needs to be used. 

An explicit concept of metadata can improve the quality of information, because the 
need for formality places an obligation on the creators of information to think clearly 
about purpose and content. The emphasis on use means that metadata systems need 
to be designed with usefulness and usability as important criteria. Because the poten-
tial uses of metadata are very wide, the need for usefulness should be seen as a moti-
vation towards rich design, not as a constraint leading to a minimal, lowest common 
denominator approach for a single usage context. 

Discussion of whether certain information is or is not metadata is generally pointless. 
I take the view that if information is potentially useful, and it is not data for analysis, 
then it is metadata. However, even this can be too restrictive, because information 
that is metadata in one context can be seen as statistical data in another. Because all 
metadata is data (and so is accessible for analysis if required), this presents no prob-
lems. 

3.2 Some History of Statistical Metadata 

3.2.1 Codebooks, Data Documentation and Relational Databases 

Packages such as SPSS introduced commands for handling metadata (mainly the data 
layout and labelling commands), but treated these as part of the job command struc-
ture. The idea of the internal Save File included the metadata associated with the ex-
tracted data, but this was not accessible or reusable in other related contexts. 

The idea of treating the metadata about a dataset as an independent block of informa-
tion (a Codebook) arose in the 1970’s, with the Osiris package from the ISR in Michi-
gan being important in this development. These ideas were carried forward to the 
World Fertility Survey (WFS, from 1975 to 1984), where an independent Data Dic-
tionary System was developed. This consisted of a separate file (of fixed format card 
images) for each data file, giving the layout and coding of all the variables, plus in-
formation about special (missing and not applicable) values and some background 
context. 

An important aspect of the WFS system was that it was supported by functionality. A 
library of Fortran routines was developed, so that programs could be written that ac-
cessed the metadata directly. Equally important, an interface program for SPSS was 
developed. This allowed the user to select the dataset to be analysed and to select (by 
name) the variables to be analysed from that dataset. The program then generated the 
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commands needed by SPSS to access the data and label the variables, and integrated 
these commands with the analysis commands written by the user. 

At around this time, the first commercial Relational Database Management Systems 
(RDBMS) were appearing, based on the model proposed a decade earlier by Ted 
Codd. This model provides an integrated way of dealing with related datasets, and 
this model is far richer than the single card-image file that is the basis of almost all 
statistical systems. Codd’s original proposals explicitly address issues that we now 
see as metadata, by requiring that all specification information about a RDB should 
be accessible as data, and by including the concept of Domains, corresponding to 
code lists. Unfortunately, these aspects of the model have not been developed in most 
commercial systems (or, at least, not to the point that they support statistical meta-
data requirements well).  

Relational database systems have reached an advanced stage of refinement, and are 
now an important component for any statistical data storage and processing system. 
This includes the storage of statistical metadata. The problem is that the special func-
tionality needed for handling statistical metadata is not available as native functional-
ity within any RDBMS, but still has to be programmed separately. 

3.2.2 Other Metadata 

Statistics does not have a monopoly over the metadata concept. An important other 
strand, relevant to statistical uses, comes from the Information Science domain. In the 
1980’s, the Standardised Generalised Markup Language (SGML) was defined, under 
initiatives from the Librarian community, for use in describing documents. This is us-
ing the idea of an extended, structured abstract from a document as a means of cata-
loguing and discovery, without reference to the detailed content of the document. 

This idea has been developed and broadened, and led to the Dublin Core standard 
for document metadata. The UK government (along with many others) has elabo-
rated the Dublin Core for its own e-GMS metadata standard for electronic documents 
– the identifying information at the beginning of this report is an example of meta-
data based on the e-GMS design. This standard is part of the UK e-government initia-
tive, and use of e-GMS is now a requirement for all UK government web sites. The 
purpose of this is to support automated search and discovery processes which oper-
ate across multiple sites without needing to know the nature or structure of the sites 
or the information that they contain.  

One side-effect of the e-government initiative is that it is no longer necessary to ex-
plain the term metadata every time it is used. However, we do still have to explain 
that statistical metadata has much wider uses than for document discovery. 

3.2.3 Recent developments 

A number of projects funded under the EU 4th and 5th Research and Development 
Framework programmes managed by Eurostat (DOSIS and EPROS) included the de-
velopment of statistical processing software. Several of these developed proposals for 
models for statistical metadata.  
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A lack of coordination amongst the metadata aspects of these projects was a motiva-
tion behind the MetaNet project (a Network of Excellence for Statistical Metadata), 
also funded under EPROS. This brought together many people working on statistical 
metadata in Europe and more widely, with the objective of identifying the best cur-
rent work and carrying it forward. A number of important conclusions came from 
this project. Some are discussed on the next section, and important reports can be 
found on the MetaNet web site. 

At about the same time, an important initiative was developing in the USA. This 
came from the data librarians, who have links in both the statistical and the informa-
tion science fields. This led to the Data Documentation Initiative (DDI), which has 
produced a significant and ongoing metadata model for describing statistical data re-
sources, called the DDI Codebook. While this has a number of limitations in terms of 
generality, it has considerable depth and applicability, and has been adopted by a 
number of statistical processing systems. Importantly for Opus, it is the metadata 
standard behind the Nesstar package which is used by both Transport for London 
and ETH in Zurich. 

A related development has been the definition of the eXtended Markup Language 
(XML), which is based on SGML. This is a standard for the construction of languages 
for the interchange of complex information structures. It is text-based, and so is easy 
to transfer over the Internet. It is the basis for a wide range of exchange standards for 
various processes, and metadata exchange is obviously covered by this. Some authors 
see XML as the solution to all problems associated with the design and use of statisti-
cal metadata systems. While XML is extremely important as a tool for exchange, this 
wider enthusiasm is misplaced. See [West03] for further discussion. 

3.3 Important Concepts for Statistical Metadata  

3.3.1 Multiple Facets of Metadata 

Froeschel et al [FWdV03] propose a five-dimensional approach to the classification 
and description of metadata. These five dimensions (or facets) are 

• a structure facet (the “entity” dimension: what things are); 
• a view facet (the “role” dimension: the different ways things are considered); 
• a form facet (the “material” dimension: how things are represented); 
• a stage facet (the “process” dimension: how and where things are used), and 
• a function facet (the “agent” dimension: the purpose things are used for). 

The details of these five facets are elaborated in the paper, but they serve here to rein-
force the fact that statistical metadata serves many purposes. 

3.3.2 Levels of Abstraction 

Ideas can often appear at more than one level of specificity. For example, the idea of a 
variable can be applied to the actual data values that appear in a particular dataset, or 
to a standard designed for coding such a variable across several datasets, or to a more 
abstract definition of the idea that is intended to be represented by some measure, 
which could have several different coding schemes. Often there are three or four eas-
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ily distinguished levels of abstraction, from the very specific, through more general, 
to very abstract and generic. 

Much confusion can arise in the discussion of metadata ideas from the failure to be 
explicit about the level of abstraction being discussed, particularly when different 
discussants are thinking at different levels. 

For the generic discussion of statistical models at the GAPM stage we need to think 
about variables at a level that is explicit about their intention (what they represent). 
Within particular statistical models, where variables are used in algebraic relation-
ships, we need to be specific about their form, in terms of measurement or coding. It 
is only when we consider the fitting of models to data that we need to consider actual 
variables represented in real data files. So in this example we have three different 
levels of abstraction for variables, all of which are needed but at different points in 
our discussions. 

3.3.3 Levels of Application 

Statistical metadata can be used to support many different tasks. 

1. Recording background knowledge (descriptions, definitions, motivations, as-
sumptions, etc.) about a process or system in a textual form, so that it can be read 
by others. This textual form also supports discovery by searching the text. 

2. Recording technical specifications of structures (including data sets), processes or 
systems. Doing this in a sufficiently formal way allows the information to be read 
and used by software, as well as by people. And where software is used to sup-
port the specification process it can generate the metadata directly. 

3. Recording the application of process specifications, including the initial condi-
tions, specifications and data sources used, intermediate stages and final out-
comes. 

The same information can contribute to different uses, and the users can have very 
different requirements. People generally need information presented in a way that 
explains and guides them and supports discovery and the development of under-
standing. On the other hand, systems that use metadata require a very formal struc-
ture so that necessary information can be found where expected and used as 
expected. 

It is important to recognise the wide range of potential applications for metadata 
structures. Solutions for special cases or with a very limited range of application 
(even when that is the main focus for a task) are likely to exclude other uses and limit 
the options for re-use in other contexts. Instead, it is better and safer (if potentially 
more expensive) to recognise and address the complexity problem. The simpler cases 
can by handled by specifying defaults, so that the solution allows complexity to be 
ignored when it is not needed. 

3.3.4 Metadata and Statistical Objects 

Metadata does not exist on its own, it represents objects in a larger space or ontology. 
The more complete and precise the metadata specification, the clearer the function 
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and attributes of these objects become. This interaction between descriptions of data 
and the underlying concepts used for modelling or analysis needs to be understood. 

An important (relatively recent) recognition (see [FWdV03]) is that advanced statisti-
cal metadata is tightly linked with the objects that are the building blocks for statisti-
cal methodology. These include things like sample designs, datasets, analyses, 
models, etc. An understanding of the structure and functionality of these objects (as 
classes at an abstract or generic level) leads us to understanding of the metadata 
needed for specific contexts (instances of the generic classes). This top-down ap-
proach is the basis for the UMAS (Unified Metainformation Architecture in Statistics) 
methodology proposed in that report. 

A related but bottom-up approach is the Reference Model methodology (see 
[Karg03]). This is particularly good at getting a group of specialists to identify and 
agree on their requirements from metadata structures. 

The implication of this for Opus is that in order to construct a model for metadata 
about statistical modelling, we must first refine and formalise our understanding of 
the statistical modelling process and the objects on which it operates. Then the meta-
data model will enable us to record information about these objects and processes. 
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4. THE REPRESENTATION OF STATISTICAL MODELS 

4.1 Model Components 

4.1.1 Overview 

There are five essential elements for a statistical model. These are 

1. Variables, which may or may not be observable, and for which we may or may 
not have any data. 

2. Parameters (characteristics of the underlying system), chosen because we are in-
terested in information about them, or because they are needed for our formula-
tion of the system. 

3. Mathematical relationships (of various forms) between the underlying constructs 
(variables and parameters) of the model, with parameters for the detailed specifi-
cation of the relationships. 

4. Probability distributions (from various families) for variables and parameters, 
with parameters and interdependencies. 

5. Information (knowledge distributions) about the parameters in the model (for 
both the relationships and the distributions).  

Note that the information (the fifth element) can be changed (updated) by calibration 
of the model against data – we can talk about a new or updated fit of the model to 
data.  

The first four elements of the model form the model specification, and if we change 
any of these, we have a different model. Models may be closely related and inherit 
any or all of the elements, and it will be important to track such inheritance and 
change. 

The fifth element represents the current state of the model, and the same model can 
have different states, for example, before and after calibrating the model with an ad-
ditional dataset. 
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4.1.2 Model Specificity 

We are concerned mostly in this report with the detailed models that are calibrated 
against actual data, for which all the elements are needed. However, the more ab-
stract versions of models (up to the GAPMs proposed elsewhere) are also covered. 
These will generally have more detail about general structure (the first two elements) 
than will be applicable in a particular context, but less of the specific information rep-
resented by the last two elements. The links between models allow a specific model 
to be linked to the more abstract one on which it is based. 

4.1.3 Data and Variables 

Statistical models exist independently of any data. A model is unlikely to be useful 
unless at least some related datasets are available, but the conception of the model 
does not rely on the existence of specific datasets.  

A model does, however, need variables. These need a firm conceptual basis (so that 
we can assign distributions and use them in relationships), and in many cases it will 
be necessary to be specific about the representation of the values of such variables, 
down to measurement methods or coding schemes. So we need a concept of variable 
that is at a level of abstraction (generality) above the specifics of fields in datasets, but 
that is more specific than the general description of motivations and objectives. We 
do not need to link to actual variables in data files: that is only needed when we use 
the model in a fitting process. 

Notice that we will often need to use latent variables in models, that is, variables 
which are about members of a statistical population but for which no measurement 
process exists. We will also need variables which are characteristics (parameters) of 
the statistical populations (or the underlying system) rather than the observable units 
(members). In general, we can choose whatever formulation or characterisation of 
variables is most convenient for the specification of the model, because we can al-
ways transform this if needed for linking to data. 

When we move on to trying to use real data to calibrate a model (by improving the 
knowledge associated with it) we will need to take account of mappings between the 
(conceptual) variables in the model and the actual variables measured in the data. 
This will cover differences in representation and coding, but will also need to take ac-
count of measurement processes, including sampling issues. In general these do not 
need to be included in the model, except where the model specifically includes as-
pects of the observation process. 

An essential first step in constructing a model is to identify the (real and latent) vari-
ables that are of interest. 

4.1.4 Parameters 

These are characteristics of the underlying system. They can be thought of as vari-
ables that are about the underlying constructs in the system (populations, decision 
processes, the weather system) rather than about the observable data units that are 
the consequence of the system. Some of these parameters will relate directly to ob-
servable quantities in datasets. For example, a parameter which is the population 
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mean of an observable variable can be estimated by the mean value for the observa-
tions on that variable in a sample. Other parameters may be characteristics of distri-
butions or relationships which only indirectly affect the observations in a sample (via 
their effect on other parameters or variables), and so can only be estimated indirectly. 

Examples are the means (and other moments) of the distributions that we associate 
with variables, and slopes and intercepts in linear relationships between variables. 
Many relationships between variables will have parameters which represent aspects 
of the relationship about which we want information, or about which we are uncer-
tain. 

Similarly, we may be uncertain about the appropriate distributional form for a vari-
able. We can represent this by introducing parameters that select a specific distribu-
tional form from within a wider class. Estimates for such parameters are obtained by 
finding the specific distributional form (from the family) that best corresponds to the 
data. 

There can be relationships between parameters. For example, with two groups within 
a population we may choose to introduce a parameter which is the difference be-
tween the means of the two groups.  

We often have some knowledge about the possible values of parameters, but there is 
always (more or less) uncertainty about them. We represent this uncertainty by asso-
ciating distributions with parameters, just as we do with variables. These distribu-
tions are often referred to as ‘priors’, and when we have no prior information we use 
‘uninformative’ or ‘vague’ priors. 

Note that while the mathematics of the use of distributions is the same for parameters 
and variables, the interpretation is different, one being based on unknowable uncer-
tainty, and the other on (potentially) observable variability. We can use this corre-
spondence in the representation of the model, but we need to maintain the distinction 
between variables and parameters because they play different roles in the fitting 
(calibration) process. 

4.1.5 Distributions 

We assume that a set of useful mathematical forms for probability distributions is 
available as a primitive construct. This will include the Exponential Family1, and any 
other continuous distributions that are needed. Similarly, a set of discrete distribu-
tions will also be available. All these will have parameters to make their form and 
moments specific when applied to particular variables. We will also need to be able to 
specify tables of multinomial probabilities for discrete classifications. Some form of 
parameterisation will be needed for these as well. 

Joint distributions for related variables present more of a problem. The use of trans-
formations and conditional independence means that in many cases, sequences of 
equivalent independent variables can be constructed. For example, a full rank set of 

                                                      
1  The Exponential Family includes all the common continuous statistical distributions, such as Normal (N(µ, σ2)), 

Chi-squared (χ2(υ)), F, Cauchy, Exponential, Lognormal (Ln(µ, σ2)), Beta (β), Gamma (Γ), etc. plus the derived 
discrete ones, such as Binomial (B), Poisson (P), Negative Binomial (Nb), Multinomial (or Dirichlet) (M), … . 
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related normally-distributed variables can always be converted (through linear trans-
formations) into an orthogonal (independent) set, from which the original variables 
can be reconstructed. 

Similarly, mixture distributions (if needed) can be handled by a discrete selection 
stage followed by a simple distribution conditional on (chosen according to the out-
come of) the first stage. 

While many of the distributions that we use will have closed mathematical forms, 
sometimes we will only have a simulated estimate of the distribution. This happens 
frequently with the posterior distributions that result from Bayesian updating, par-
ticularly where the model structure is complex. Then we have to resort to MCMC 
methods to estimate the posterior distributions, and the result is a set of observations 
on the distribution. We can represent this estimate of the distribution either by retain-
ing all the observations, or by using them to estimate the parameters of a suitable dis-
tribution chosen from our set of distributions, or by forming an empirical summary 
distribution, represented by a histogram or a smoother kernel estimate. Multivariate 
generalisation will probably be needed as well. 

It will often be important to explicitly distinguish between different sources of vari-
ability when assigning distributions. For example, it may well be useful to take sepa-
rate account of measurement variability (through faulty or concealed reporting by 
individuals, or counting error in equipment or by monitors), of response variability 
(where different members of a population behave differently, even after allowing for 
known predictive factors), and of underlying variability, representing unpredictabil-
ity at the level of detail in the model (for example, the variability in the rate of flow of 
traffic along a segment for a given level of loading, or variability in the time taken for 
a given number of passengers to board a bus, or where the same person behaves dif-
ferently on different occasions). 

When dealing with a simple dataset these different sources of variability are gener-
ally rolled-up together. However, in a detailed model it will be important to be ex-
plicit about the point in the chain of variability at which relationships hold. For 
example, we will need to distinguish between the situation where a relationship af-
fects the mean value for an underlying value, to which response variability is added, 
and that where the response is completely determined, but measurement variability 
obscures that value. 

It may be useful to apply the idea of levels of abstraction to the use of distributions. 
At the concrete level we have actual observations about respondents. The first level of 
abstraction relates to the distributions used to summarise the variability in the obser-
vations. The next level relates to our knowledge, about the parameters of these data 
distributions and about the parameters of relationships between variables. A third 
level (not always needed), reflects uncertainty about the parameterisation, including 
uncertainty about precise distributional forms. 

4.1.6 Relationships 

The relationship component specifies how the variables in the model are related to-
gether. Every variable must appear in at least one relationship with other variables. 
Notice that there cannot be disjoint sets of variables in the model – if one set of vari-
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ables has no relationship with some other set, then they are (by definition) parts of 
two disjoint models. 

The only assumption we make about a relationship is that it can be expressed in a 
mathematical form. Many different types of relationship can be included. 

1. Relationships between observations: 
EE{Vi} = θ1 + θ2 * vj, or, more generally 
EE{Vi} = g(vj, θ),  
where capitals represent the abstract (random variable) form of a variable, lower 
case represents a realised observation and bold represents vectors.  g is an arbi-
trary function. 

2. Structural relationships between variables: 
Vi = g(Vj, θ). 
Note that this is an exact relationship, so that all variability in the Vi is inherited 
from the Vj, and the former are fixed (constant) conditional on the latter (though 
there may be observational error that introduces variability into the realised val-
ues). 

3. Constraints on variables: 
g(Vj, θ) = 0. 
Note that this is actually a special case of the previous relationship. 
This form also includes inequalities, which can be thought of as logical expres-
sions which must evaluate to the constant value ‘true’. 

4. Conditional independence: 
Vi ⊥ Vj | Vk, or 
f(Vi, Vj | Vk) = f(Vi | Vk) * f(Vj | Vk). 

Similar examples of relationship are allowed between parameters, though parameters 
cannot (logically) be defined in terms of variables. 

We assume that the complete model can be specified by a set of relationship equa-
tions. 

Specific statistical methodologies (such as Graphical Modelling or the Generalised 
Linear Model) fit into this framework, but may only allow a restricted set of relation-
ship (and distributional) forms. 

4.1.7 Knowledge 

Our structural knowledge about the system being modelled is already embodied 
through the previous components, in the selection of variables, parameters, distribu-
tions and relationships. What remains to be expressed is our prior knowledge about 
the likely values of the parameters (the θs) used in these previous components. 

We have already introduced distributions to express the uncertainty of our knowl-
edge about the parameters. We now need to introduce whatever information we do 
have about the likely values. The mean of such a distribution will usually be our best 
estimate of the value of the parameter, and the variability (variance) will reflect our 
confidence (or uncertainty) in that mean value (so a distribution can be degenerate – 
constant, zero variability – in the unlikely case that we are certain about a value).  
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Usually we will use estimates from previous data or previous models, using the un-
certainty associated with those estimates. We will often also have information about 
the shape of the distribution – is it limited to a finite range, always positive, symmet-
rical or skew? Where we have no information we will choose values that correspond 
to vague priors. 

Note that parameters are almost always conceived as continuous – so we do not have 
to worry about discrete distributions here – and that a Normal distribution is gener-
ally a reasonable assumption for the uncertainty about a parameter that is an esti-
mated mean. 

We do not need to have any previous data about a parameter, we just need to be able 
to make a judgement and assign confidence to it through the form and spread of a 
distribution. If we are really not confident to do that, then we can introduce another 
level of parameterisation to express this uncertainty. 

So, if we have a parameter (µ) that is a mean, and we have previous data about the 
mean, we may express this knowledge as µ ~ N (m, s2), where m and s are the mean 
and standard error previously estimated. This distributional statement represents our 
knowledge (or uncertainty) about the parameter µ, and the set of such statements 
constitutes out overall knowledge about the current state of the model.  

In general, then, the last step in the model specification is the construction of a set of 
explicit distributional statements about parameters, where the distributions are speci-
fied through numeric values, not further parameters. We can characterise such pa-
rameters as ‘terminal’, in that out knowledge about them is not expressed in terms of 
other parameters. 

Note that all other distributions in the model are defined through relationships or 
distributions that depend (directly or otherwise) on these terminal parameters. 

4.1.8 Model Updating 

As we have already said, when we update a model, the specification part of the 
model does not change, and all that can change is the knowledge part, represented by 
the distributions associated with the terminal parameters – we start with prior distri-
butions and the updating process produces posterior distributions for these parame-
ters.  

The form of posterior distribution for the terminal parameters will be determined by 
the model and the data used for updating, and, in general, will not be the same as the 
prior distributions. If the posterior distribution for a parameter is the same as the 
prior, then we know that the data is not related to the parameter. 

4.2 Examples of Simple Models 
Here we present how a few simple models can be formulated using the components 
above. 

4.2.1 Simple Regression 

The standard formulation for this is 
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Y ~ N (α + β*x, σ2), 

which says that Y (the dependent variable) has a Normal distribution where the 
mean depends linearly on the (independent) variable x. Standard statistical method-
ology (the General Linear Model) provides us a way to obtain estimates of the three 
parameters in this model. 

For the more general modelling formulation we need to make some small changes to 
this, and add in statements about prior knowledge. 

Variables:  
x, y, z 

Distributions:  
Y ~ N (z, σ2) 

Relationships:  
z = α + β*x 
σ2 = 1 / τ 

Parameters: 
α —  the intercept for the relationship 
β —  the slope of the relationship 
σ —  the variability of observations about the relationship 
τ —  the precision (inverse of variability) of the relationship 

Knowledge:  
α ~ N (k1, k2)   
β ~ N (k3, k4)   
τ ~ Г(k5, k6)   

We will have explicit values for k1 to k6, which are constants chosen on the basis of 
our knowledge (which might include prior data). Note that α, β and τ are terminal 
parameters, with explicit knowledge distributions, but that σ is not, since it is defined 
by its relationship with τ. 

The formulation of the knowledge component is particularly appropriate for this 
situation of prior data analysed in the traditional way. However, we might have dif-
ferent knowledge. Suppose, for example, that we know (or believe) that the relation-
ship between x and y is monotonically increasing, with slope near to 1 and passing 
near the origin, and that the average x value (and so also the average y) is around 
1000. Then we might change the representation of this knowledge to: 

Knowledge: 
α ~ N (0, 100) 
β ~ Ln  (1, 0.5)  
τ ~ Г(100, 0.1) 

Note the use of the lognormal distribution for β, which ensures positive values with-
out imposing an upper limit. 

There is usually a way of choosing the representation of knowledge that equates to 
no knowledge (vague priors), and so gives just about the same estimates from the 
model as the traditional method. However, we are more interested in the situation 
where we do have some prior knowledge, so this formulation is more appropriate. 
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4.2.2 Mode Choice 

Consider the model for the choice between three modes of travel, say car, train and 
bus, by members of a population. The basic (and extremely simplistic) model for this 
choice might be: 

Variables:  
m – indicator for one of three choices 

Distributions:  
M ~ M (π1, π2, 1 - (π1 + π2)) – multinomial distribution with 3 classes 

Relationships:  
π1 + π2 < 1 

Parameters:  
π1  —  probability of choosing car 
π2  —  probability of choosing train 

Knowledge:  
π1 ~ β (2, 8)  
π2 ~ β (4, 6)   

The Beta distribution1 is often used for priors of parameters that are probabilities, and 
these choices have means (initial best estimates) of 0.2 and 0.4 respectively, implying 
0.4 as the mean for the third class. 

Of course, the choice of a car is only possible if a car is available to the traveller. We 
can introduce that into the model as follows. 

Variables:  
m – indicator for one of three choices 
c – indicator for the availability of a car, 1 if available, 0 if not. 

Distributions:  
C ~ B (πc) 
M|c ~ M (π1 * c, π2 * (1 - π1 * c), (1 - π2) * (1 - π1 * c)) 

Relationships:  
 

Parameters:  
πc  —  probability that a car is available 
π1  —  probability of choosing car if it is available 
π2  —  probability of choosing train if car is not chosen 

Knowledge:  
πc ~ β (6, 4)   
π1 ~ β (2, 8)   
π2 ~ β (5, 5) 

Notice that this parameterisation is different, in that π2 now represents the condi-
tional probability of choosing train rather than bus, independently of whether or not 

                                                      
1  The beta distribution β (θ1, θ2) is a distribution for values between 0 and 1. It has mean value θ1 / (θ1 + θ2). For θ1 

= θ2 = 1 it is the uniform distribution, and it is uni-modal if θ1 > 1 and θ2 > 1. 
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car is an option. We assume that the preference between train and bus does not de-
pend on whether a car is available – this may or may not be a reasonable assumption. 

This model could be extended further, for example by replacing π1 with a function of 
other aspects of the context, such as the household income or the weather on the day 
the choice is made. 

4.2.3 Models in WinBugs 

The following model is the ‘Eyes’ example taken from the WinBugs manual. This 
models a single set of data as a mixture of two Normal distributions with separate 
means but the same variance, with unknown proportions in each. The specification in 
WinBugs (and the description from the manual) is as follows. 

“The analysis involves fitting a mixture of two normal distributions with common variance to 
this distribution, so that each observation yi is assumed drawn from one of two groups.  Ti = 1, 
2 be the true group of the ith observation, where group j has a normal distribution with mean 
λj and precision τ.  We assume an unknown fraction P of observations are in group 2, 1 - P in 
group 1. The model is thus  

yi  ~  Normal(λTi, τ) 

Ti  ~  Categorical(P). 

We note that this formulation easily generalises to additional components to the mixture, al-
though for identifiability an order constraint must be put onto the group means. 

Robert (1994) points out that when using this model, there is a danger that at some iteration, 
all the data will go into one component of the mixture, and this state will be difficult to escape 
from --- this matches our experience.  Robert suggests a re-parameterisation, a simplified ver-
sion of which is to assume  

λ2  = λ1 + θ,  θ  >  0. 

λ1, θ, τ, P, are given independent “non-informative” priors, including a uniform prior for P on 
(0,1).  The appropriate graph and the BUGS code are given below.” 

Graphical Specification Textual Specification 

f o r ( i  I N 1  :  N)

a l p h a [ ]

s i g ma

t a u

t h e t a

l a mb d a [ 2 ]

l a mb d a [ 1 ]

y [ i ]

mu [ i ]

T [ i ]

P[ 1 : 2 ]

 
model 
{ 
 for( i in 1 : N ) { 
  y[i] ~ dnorm(mu[i], tau) 
  mu[i] <- lambda[T[i]] 
  T[i] ~ dcat(P[]) 
 } 
 P[1:2] ~ ddirch(alpha[]) 
 theta ~ dnorm(0.0, 1.0E-6)I(0.0, 
) 
 lambda[2] <- lambda[1] + theta 
 lambda[1] ~ dnorm(0.0, 1.0E-6) 
 tau ~ dgamma(0.001, 0.001)  
 sigma <- 1 / sqrt(tau)  
} 
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This is in fact a simple system, with one observed variable, one unobserved one, no 
relationships (except to control the parameterisation), and no knowledge about the 
parameter values (non-informative priors). With our formulation, this model would 
be expressed as follows. 

Variables:  
y – observed measurement 
t – population membership (1, 2) 

Distributions:  
T ~ B (π) + 1 
Y | t=j  ~ N (λj, σ2), j = 1, 2 

Relationships:  
λ2 = λ1 + θ 
θ > 0 
σ2 = 1 / τ 

Parameters :  
π —  Probability of membership of group 2 
θ —  Difference in group means 
λ1 —  Mean of group 1 
λ2 —  Mean of group 2 
σ —  Variability of observations about the group mean 
τ —  Precision of observations about the group mean 

Knowledge:  
π ~ U (0, 1) 
θ ~ N (0, 1000000) 
λ1 ~ N (0, 1000000) 
τ ~ Γ (0.001, 0.001) 

4.3 Representation of Models 

4.3.1 Variables 

Existing proposals for the representation of variables can be used in this context. To 
be specific, we will need to list the variables assumed by the model, but all the details 
will exist in a separate component.  

We will want to link to variables at a level that includes details of their representation 
(coding, etc). We do not need to link to actual variables in data files: that is only 
needed when we use the model in a fitting process. So we need a variable concept 
that is a level of abstraction (generality) above the specifics of fields in datasets, but 
that is more specific than the general description of motivations and objectives. 

Because a model can include latent variables (which may not have been defined sepa-
rately), it will be necessary to be able to add variable definitions to the variables com-
ponent from within the model specification context.  
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4.3.2 Parameters 

Parameters are internal to a model, but have many characteristics in common with 
variables1. It may thus be useful to use a similar mechanism to record definitions and 
motivations for parameters. We certainly need to distinguish between parameters 
and variables, because they have different roles in the model and the fitting process. 

4.3.3 Relationships 

We will need a representation of relationships that can both be displayed for users 
and interpreted by software for use in the calibration (fitting) process. 

A number of systems exist for the construction (and execution) of mathematical ex-
pressions. Perhaps the best known is MathML2, which is designed particularly for the 
rendering (display) of expressions in web pages. However, it has separate compo-
nents for display (presentation) and semantics (content), with the latter being what is 
essential for our representation of models. A further system (OpenMath3) provides an 
extension of the MathML content system if that is not adequate.  

Other systems, such as Mathematica4, provide wider support for computer algebra 
and evaluation. 

A few of the existing statistical data description systems make some attempt to in-
clude the definitions of variable derivation, and these may be of some interest. 

A further area for investigation is the representation of functions and expressions in 
the standards related to Data Warehousing, such as XMLA5 and CWM6. 

4.3.4 Distributions 

Distributions are used for the variability of variables and for uncertainty (knowledge) 
about parameters.  

A set of available distributions will be defined as primitives (so that the distributions 
can be referenced, not explicitly defined) in the model specification system. The defi-
nition of each distribution will specify a set of required parameters.  A possible struc-
ture for this is shown in the following UML diagram. 

                                                      
1  Note that, while variables and parameters may be associated, this linking is induced by the relationship and 

distribution parts of the model, and so should not be explicitly recorded with either the variables or the pa-
rameters. There may, however, be a more abstract level of metadata, relating to conceptual issues such as moti-
vation and intention, to which both can be linked. This could then be used to discover that both a variable and 
a parameter were related to a concept of interest. 

2  See http://www.w3.org/Math/ 
3  See http://www.openmath.org/cocoon/openmath//index.html 
4  See http://www.wolfram.com/products/mathematica/index.html 
5  XML for Analysis – see http://www.xmla.org 
6  Common Warehouse Metamodel – see http://www.omg.org/cwm 
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+pdf(in x : any(idl)) : double(idl)
+pdf deriv(in x : any(idl)) : double(idl)
+cdf(in x : any(idl)) : double(idl)

«metaclass»
DistributionType

1 1

«metaclass»
DistParameterSet

DistNormal
+Mean : Parameter
+Precision : Parameter

DistNormalParameters

1 1

DistBeta
+Theta1 : Parameter
+Theta2 : Parameter

DistBetaParameters

1 1
 

In this structure, DistributionType and DistParameterSet are general classes (abstract 
or metaclasses) which define general properties for all distributions. Two specialisa-
tions (for the Normal and Beta distributions) are shown as examples, and others will 
be needed. 

Each distribution element of the model will consist of a reference to a distribution 
type, the variable(s) (or parameter(s)) being linked, and the parameters that make the 
distribution specific. Each parameter will be defined either through a relationship 
with other parameters, or through another distribution, or through a knowledge con-
stant. 

4.3.5 Knowledge 

Knowledge (about terminal parameters) is here represented by fully specified distri-
butions. These values represent our (prior) knowledge about the modelled system 
(before fitting to further data). After a fitting process we will have different (updated 
or posterior) distributions, which will feed into further fits. If the distribution associ-
ated with a parameter have not changed, then the data has told us nothing about this 
parameter (and the component of the system that it represents). 

The knowledge in the system is thus represented by a set of specific distributions, 
each linked to a particular application point in the model. 
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4.4 A Metadata Structure for Models 

4.4.1 Structure 

The following UML diagram shows a possible structure for the metadata used to rep-
resent model specifications and states. This summarises the discussions in the previ-
ous sections. 

ModelSpecification

Variables

1

1

Variable

1

*

Parameters

1

1

+IsTerminal
Parameter

1

*

Relationships

1

1

+RelVariable[1..*] : Element
+RelForm[1]

Relationship

1

*

Distributions

1

1

+DistVariable : Element
+StatDist : DistributionType
+DistParameters : Parameters

Distribution

Knowledge

1

1

ModelState

1

0..*

+Type
+Measure

Element

Model

1

1

1

*

+DistVariable[1] : Parameter
+StatDist[1] : DistributionType
+DistParameters[1..*] : double(idl)

KnowledgeDist
+DistVariable : Element
+StatDist : DistributionType
+DistParameters : Parameters

ModelDist

1

*

 

4.4.2 Semantics 

Amongst other things, this diagram shows that a Model consists of a ModelSpecifica-
tion and a number of ModelStates. The former defines the structure of the model in 
terms of Variables, Parameters, Relationships and Distributions, while the latter repre-
sents the numerical Knowledge about the model. Distributions for model elements 
(ModelDist) and for terminal parameters (KnowledgeDist) are both special cases of Dis-
tributions, but the latter can only be about terminal parameters, and must be fully 
specified with numeric values for the distributional parameters. In contrast, the 
ModelDist can be about either parameters or variables, and the distribution must be 
specified through other parameters. 



OPUS D3.1 Metadata for Statistical Models Page 44 
IST-2001-32471 Deliverable D3.1  version 1.4 Date 20 April 2005 
 

Initially a model will probably have no state information. This happens when we 
concentrate first on getting the model structure right, without trying to evaluate any 
knowledge. The first state for a model is likely to be based on guesswork, and in-
cludes the option for the uninformative state. Subsequent states can be derived by fit-
ting the model to data – that process is discussed in the next chapter. Further states 
can also be introduced manually, perhaps to explore the effect of different initial val-
ues, or to represent different assumptions. 

Variables and Parameters have many facets in common. This is represented in the 
(abstract) generalisation Element, which can be either, and which shows that both can 
have a Type and Measure information.  

A Relationship is an algebraic expression involving one or more elements, with the 
precise form of the relationship probably being expressed in MathML. A Distribution 
applies to an element, and specifies the type of distribution to be used, together with 
the model parameters that specify the details of that distribution type. These parame-
ters may be knowledge items or set by other relationships or distributions. 

4.4.3 Additions 

This diagram does not show the full specification of the representation of a model, 
and, in particular, additional information is needed in the form of constraints. These 
can be expressed in UML, but are not shown in the diagram. Examples of constraints 
are: 

1. every variable must be referenced in at least one relationship; 

2. every variable must either be set by a relationship or specified through a distribu-
tion; 

3. every model parameter that is not flagged as a terminal parameter must either be 
set by a relationship or specified through a distribution. 
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5. MODEL FITTING AND MODEL RESULTS 

5.1 Introduction 
The fitting (or calibration) process involves the comparison of a model with one or 
more datasets, resulting in updated knowledge. This latter is represented by changed 
values for the constants in the knowledge component of the model, that is, by the 
transition from one state of the model to another. 

To record the fitting process we will need to know the model used and the datasets 
referenced. We will need to record both the prior and the posterior knowledge (pa-
rameter values). Because different fitting algorithms are available, all of which are (in 
general) approximate and involve randomisation, we will need to record technical 
details of the procedures used and the progress to the results (such as convergence 
measurements). This should allow us to make comparisons of the process if the same 
model (with the same prior knowledge) is calibrated again against the same data. 

Results are a representation of a particular state of the model, and many results can 
be obtained from a single state. By using the linking from the state to the model speci-
fication and the fitting process, we can present aspects of the model with the results, 
and compare results based on different states of the same model. 

5.2 Model Fitting 

5.2.1 Structure 

The following UML diagram shows how the model fitting process can be represented 
as additional structure associated with a Model. Only those parts of the model repre-
sentation (as shown in the previous chapter) that are needed for this discussion are 
shown here. 
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Model

ModelSpecification

1

1

+UserFit[0..*] : ModelFit
+SourceFit[0..1] : ModelFit

ModelState

1

0..*

Variables

1

1

+Method : CalibrationMethod
+PriorState : ModelState
+PosteriorState : ModelState

ModelFit

1 +Prior State

0..*

-Posterior State1
0..1

+Dataset[1..*]
DataSets

1

1

DataMapping

1 0..*Variable

1

*

DataItem

1

1..*

-InitialValues
-FitProgress
-Convergence

FitRecord

1

1

 

5.2.2 Semantics 

Each ModelFit is linked to a Model through its prior ModelState, and so has full access 
to all the elements of the ModelSpecification. Generally, there will be multiple fits 
based on the same model, and there can be different fits that use the same prior state. 
The result of the fit will be a new state (the posterior state) for the model. The fits thus 
act as links in chains of model states. 

A fit will be based on data from a number of Datasets (often only one), from which 
various DataItems will be relevant. Each such item must have a mapping to a vari-
able in the model. The mappings will allow for changes in the representation of in-
formation between the concrete versions in datasets and the slightly more abstract 
versions in the model specification. For example, Age and Income might be repre-
sented as continuous measures in a model, but only collected as grouped values in a 
dataset. A different example is where the model operates at a detailed level, but the 
data is aggregated. 

The mapping specification must be such that it allows the likelihood of the data to be 
calculated from the distributional information associated with the variable in the 
model. Note that we do not require that every variable in the model has a mapping to 
data – unmapped variables will just not contribute (directly) to the likelihood calcula-
tions. 

The FitRecord will record aspects of the fitting process that may be useful for later 
analysis of the process. 
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5.2.3 Link to Calibration Software 

The CalibrationMethod attribute of the model fit is a surrogate for a link through to 
the software that actually performs the calibration process. WinBugs is an example of 
a package that might be used for this process.  

Conceptually, the software can access the (instances of) the structure shown here and 
so extract all the information that it needs to perform the calibration process, and 
then it can add back the new information about the posterior state and the actual 
process. In practice, we will need to construct an interface to each such package. This 
will extract the information needed and convert it into the form that the package ex-
pects. It will also capture the results of the process and feed these back. 

5.3 Model Results 
Any results that we derive from a model are linked to a specific state, because we 
need the numeric values that complete the specification of the model state. We can 
then derive summary measures or generate synthetic data, using the parameters and 
the distributions from the model specification. This relationship is shown in the fol-
lowing (simple) UML diagram. 

+UserFit
+SourceFit

ModelState

ModelResults

1

0..*

 
We can link results to the data used for the fit that created the state, and because the 
state is linked to a single model we can easily compare results created from different 
states of the same model. 

Discussion of the appropriate form for results from these modelling processes is be-
yond the scope of this report. 
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6. SUMMARY OF STRUCTURE 
The following UML diagram shows all the elements of the model structure together. 
Some details that are included in the previous diagrams are omitted here, for clarity. 

Model

ModelSpecification

1

1

Variables

1 1

Variable

1 *

Parameters

1

1

+IsTerminal
Parameter

1 *

Distributions

1

1

Relationships

1

1

+RelVariable
+RelForm

Relationship

1 *

+UserFit
+SourceFit

ModelState

1

0..*

Knowledge

1
1

+Method
+PriorState
+PosteriorState

ModelFit
1 +Prior State

0..*

-Posterior State

1

0..1

-InitialValues
-FitProgress
-Convergence

FitRecord

1 1

+Dataset
DataSets

1

1

DataItem

1 1..*

DataMapping

1

0..*

ModelResults

1

0..*

+DistVariable
+StatDist
+DistParameters

KnowledgeDist

1 *

+DistVariable
+StatDist
+DistParameters

ModelDist

1 *

 
In addition, the metaclasses shown in the following diagram have been defined as 
generalisations that can be elaborated for specific distributions and calibration meth-
ods. A few such elaborations are shown, but more will be needed. 
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+pdf(in x : any(idl)) : double(idl)
+pdf deriv(in x : any(idl)) : double(idl)
+cdf(in x : any(idl)) : double(idl)

«metaclass»
DistributionType

1 1

«metaclass»
DistParameterSet

DistNormal
+Mean : Parameter
+Precision : Parameter

DistNormalParameters

1 1

DistBeta
+Theta1 : Parameter
+Theta2 : Parameter

DistBetaParameters

1 1

«metaclass»
CalibrationMethod

MCMC WinBugs Tebaldi

DistMultinomial
+Length[1] : long(idl)
+Codes[1..*] : string(idl)
+Probability[1..*] : Parameter

DistMultinomialParameters

1 1
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7. CONCLUSIONS 

7.1 Summary 
We have analysed the conceptual structures needed for statistical modelling and pro-
posed a basic conceptual structure for representing the metadata that is needed to 
work with such models and modelling processes. This structure is presented as a 
conceptual model in UML. 

7.2 Further work 
The next step is to bring the general concepts developed here to the real problems be-
ing addressed within the Opus project. This will lead to extensions to cover practical 
problems, refinements resulting from deeper understanding, and revisions where 
current structures prove impractical. This will all lead to the production of a revised 
version of this document towards the end of the project. 
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APPENDIX 1: THE OBJECT PARADIGM 
Much current (and recent) work on modelling is based on the Object Oriented para-
digm, and this is the approach assumed for UML.  

An object is a structured collection of information, an instance of a particular compo-
nent (such as a classification). An object must conform to its definition, and the gen-
eral definition of a particular type of object is called a class (not a particularly good 
choice of name). The specification of a class determines the structure and semantics of 
the objects that are instances of that class – the objects can contain different informa-
tion, since they describe different instances, but their structure and behaviour is the 
same1. 

The specification of a class includes the attributes which form its structure – these may 
be simple (such as numbers or strings) or complex (effectively links to and collections 
of other objects). 

Every object (instance) has a unique identity, and this can be referenced by other ob-
jects. Object identities are global, so object references do not need different forms for 
different types of object.  

Classes support the idea of inheritance, specialisation and generalisation. One class can 
be defined as based on another, so that it inherits all the properties (structure and 
semantics) of its parent class. New structure and semantics can be defined for the 
child, but only those things that are different have to be specified. The child class is a 
specialisation of the parent, which in turn is a generalisation of the child. In particu-
lar, this means that a child class is also valid anywhere that the parent class can ap-
pear in a structure or an operation (because it inherits all its’ parent’s structure and 
behaviour). A child class can substitute its own behaviour for that of its parent if ap-
propriate – this is called polymorphism. For example, a child could respond to a ‘print’ 
command differently from its parent, because it has extended content and/or more 
specialised understanding of how this should be presented. 

A class can be dependent on another, in that it needs to know about the structure and 
semantics of the depended class, so that it can make use of it. This is a one-way rela-
tionship. Where one object makes reference to another (of the same or a different 
class) this is called an association, and this is usually bi-directional. For example, a 
data cube may be constructed with reference to a particular classification for one of 
its dimensions. In the implementation of the model the dimension could contain a 
reference to the classification, and the classification may maintain a list of all the di-
mensions that reference it. 

References can be traversed without knowing what type of object is at the other end. 
Generally it is useful to design an object structure (class) so that references are organ-
ised according to their type, but it is always possible to follow a reference first, and 
then find out what type of object has been reached afterwards. 

                                                      
1  The behaviour of an object may depend on the values it contains, but only in a way defined for the class as a 

whole. 
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