[image: image3.wmf]
Survey & Statistical Computing

	76 Blake Road, Bounds Green, London N11 2AH, UK

Andrew Westlake, MA, MSc, MBCS, FSS
	Phone: +44 (0) 20 8374 4723

Fax: +44 (0) 87 0055 2953

E-Mail: AJW@SaSC.co.uk

Web: WWW.SaSC.co.uk

Survey & Statistical Computing

Models and Metadata

Models and Metadata
Contents

21.
Introduction

21.1
Statistical Metadata

21.2
Acknowledgements

32.
The role of Modelling

33.
Elements of Models

44.
Levels of Model

45.
Existing Models

45.1
The UMAS proposal

55.2
The Terminology Reference Model

56.
Representation of Models

66.1
The UML standard

66.2
Levels of Modelling

76.3
The Role of XML

76.3.1
Basic Structures

76.3.2
Complex structures

86.3.3
Semantics

86.4
Examples

86.4.1
Class Diagram for triple-s

96.4.2
Special Values: an example of semantics

106.5
UML in practice

107.
Model Development

118.
Communicating Models

129.
Conclusions

1310.
Appendix 1: The Object Paradigm

1. Introduction

Models are abstractions from real-world situations, designed to support some particular context. With Statistical Metadata we are mostly concerned with software to support the processing and analysis of statistical information. Models provide the opportunity to specify how information can be shared between stages of processes (so that later stages can make use of information entered in earlier ones) and how information and specifications can be moved between independent applications. Because we are supporting the development and use of software, our models need to be detailed and precise in their specification of the structures and semantics of the information. However, the model also determines a conceptual framework for process designers and software users, so they must be able to view elements of or generalisations from a model, with less detail than is needed by software developers. Furthermore, when developing a model we need to work with domain and subject specialists to discover their needs and to help them to agree on model components and structures. These people will probably need assistance to express this knowledge in ways and with sufficient precision for use in the model, and will need help in understanding the model representation of their knowledge, so that they can confirm that the model represents this knowledge correctly.
1.1 Statistical Metadata

For completeness, we reproduce here our definition of statistical metadata.

Statistical Metadata is any information that is needed by people or systems to make proper and correct use of the real statistical data, in terms of capturing, reading, processing, interpreting, analysing and presenting the information (or any other use). In other words, statistical metadata is anything that might influence or control the way in which the core information is used by people or software.

It extends from very specific technical information, used, for example, to ensure that a data file is read correctly, or that a category in a summary table has the right label, or that the design of a sample is correctly taken into account when computing a statistical summary, right through to descriptive (intentional) information, for example about why a question was worded in a particular way or why a particular selection criterion was used for a sample.
Thus, metadata includes (but is not limited to) population definitions, sample designs, file descriptions and database schemas, codebooks and classification structures, processing details, checks, transformation, weighting, fieldwork reports and notes, conceptual motivations, table designs and layouts.
1.2 Acknowledgements

The ideas presented here have been expounded and discussed during the MetaNet
project, particularly in work groups 1 and 2 and at the final conference. Of particular importance is work with Chris Nelson, of Dimension EDI, but the author takes full responsibility for all the ideas and opinions expressed here.
The initial version of this document was produced in July 2003, and is an elaboration of material prepared for and presented at the MetaNet final conference. That draws extensively on section 3.1 of the MetaNet deliverable D4, the report on Methodology and Tools for Statistical Metadata. Small changes have been made since then.
2. The role of Modelling
Models are abstractions, designed to meet a particular need in a particular context. Thus the form and roles of models can be very different. Some examples may help to show some of the range.
Conceptual Models are an attempt to form a frame of reference for some domain or collection of constructs or concepts. These are often similar to classification structures, and such structures (for example the International Classification of Diseases – ICD – or NACE, the General Industrial Classification of Economic Activities within the European Communities) can be seen as conceptual models.
The Relational Database Model is a formal specification of the structures and behaviour for databases formed from sets of rectangular tables. This provides a conceptual framework for thinking about databases (one that is widely used) but is also sufficiently detailed and precise to be the basis for the implementation of many database software systems.

The Object Oriented approach is an alternative (more general) way of thinking about databases and program structures (an alternative paradigm), built using a different set of primitive constructs, assumptions and conventions.

The statistical Generalised Linear Model is a mathematical specification of the way in which a set of predictor variables influence a dependent variable, together with the form of the variability about that relationship. This model is very flexible and is widely used for estimating statistical relationships (using suitable software to calibrate the model to a particular data set), and for discussing the potential form of such relationships. Of course, there are many situations where the GML is not an appropriate form of model.

Structural Models concentrate on the objects and attributes that are used to represent information structures. This is necessary for the exchange of information between systems, but needs to be accompanied by clear specifications of the intended purpose and use of the various elements. Inconsistent interpretation by independent users or implementers working with such a structure is a continuing concern, unless some enforcement mechanism can be specified and implemented.

With statistical metadata we are looking for models that allow us to interchange information between processes and systems and that provide a stable conceptual framework for users to work with complex information structures across processes and systems. We want to support users of statistical systems, support the automation of statistical processes, and exchange information between systems and processes.
We can have more than one model, focussing on different parts of the statistical process, but they should dovetail together when a wider picture is needed. And we should aim to get suitable models accepted as standards, agreed and used across the statistical domain.
3. Elements of Models

To these ends, we need models that provide formal specifications of components and relationships, avoiding misinterpretation. They must address:

· Structure: how are the elements organised, how are elements grouped and related, what attributes are needed for each type of element.
· Semantics: what do the elements represent, what rules and constraints apply to their attribute values, to their states and to the way in which they are used.
· Methods: specifications of algorithms and processes that apply to the elements and the data they refer to.

· Concepts: complete and detailed definitions of the terms and concepts that are the subjects and objects covered by the model and of the relationships between them. In some situations this may correspond to the idea of a thesaurus.
To construct models quickly and accurately we also need a modelling framework or workbench, which provides generic building blocks for model components and tools to support the design process.
4. Levels of Model

Models exist at various levels of abstraction, and confusion can arise from not recognising the level to which a particular construct contributes, or at which a discussion about the model is taking place.
For example, the metadata about a particular survey forms an instance of the more general model that can be used to describe other surveys (of the same general type). This in turn will draw on both a conceptual model of the application domains for which the model is appropriate, and on a more abstract model of statistical processes and surveys in general. These abstract models of statistics are sometimes called meta-models, and are themselves constructed as instances of an even more abstract model for the process of defining models.
Once grasped, the fact that there are different levels of model does not need to cause confusion, but the failure to recognise the levels can be very confusing.

5. Existing Models

Within the MetaNet project we have identified a large number of models for metadata, most of them addressing a general problem but within a limited domain of application. Some are extensive and detailed, such as the DDI
 Codebook for documenting datasets from surveys, others much more limited in scope, such as the triple-s proposal for survey data exchange
. Deliverable D4 from work group 1 contains details of most of the models and related systems identified by the MetaNet project.
Two extensive and more general models have been developed during MetaNet.
5.1 The UMAS proposal

Karl Froeschl, Wilfried Grossmann and Vincenzo Del Vecchio have produced a significant report on the concept of Statistical Metadata (MetaNet deliverable D5) which includes the specification of a model (UMAS) for the main components of statistical systems. This extends from the abstract concepts of populations and samples to detailed descriptions of datasets (similar to DDI).
The complexity of statistical metadata is a consequence of the many entangled facets of the subject. In order to help reduce this complexity, the following five (at least) canonical metadata dimensions can be singled out, giving rise to a five-way metadata framework:

(1) Structure: (the “entity” dimension: what things are); A break-down of metadata entities into classes like population units, populations, variables, value sets (including measurement units), values, datasets, and the (formal) interrelations between them.

(2) View: (the “role” dimension: the different ways things are considered);A four-fold distinction of metadata into semantic (determined mainly by substantive matter considerations), statistical (referring to statistical properties of the data), computational (referring to all issues of data representation) and administrative (referring to the organisational aspects of the institutions producing, processing, and using the data) roles.

(3) Stage: the “process” dimension: how and where things are used); Metadata in each of the statistical processing life-cycle’s phases such as data definition, data production, data transformation (a rather broad area itself including many subtopics such as data modification and data aggregation), data exchange, and data dissemination.

(4) Form: (the “material” dimension: how things are represented);A broad subdivison of metadata into intensional form metadata (i.e. more or less textual information about the data targeted at human interpretation) and extensional form metadata (i.e. a formal representation amenable to machine processing).

(5) Function: the “agent” dimension: the purpose things are used for); A pragmatic dissection of metadata according to the needs emanating from specific retrieval/usage scenarios, including also aspects of data quality/quality management.

5.2 The Terminology Reference Model

This system has been developed by Reinhard Karge, based on experience working with various other MetaNet partners and on other projects, to identify the important concepts and structures for discussing and representing statistical metadata. The resultant models are called Terminology Models.
Terminology models can be defined by defining names for statistical concepts such as classification or classification item and their attributes and relationships to other concepts (characteristics or details). Such two level terminology definition correspond directly to a conceptual metadata model were the concepts are considered as metadata object types and the details as properties (attributes and relationships) of these object types.

The meta-model for a terminology model is simple and easy to understand for non-technical persons. The terminology model consists of two object types: Concept and Characteristic. In contrast to other terminology definitions terminology models differ between context independent terms (concepts) and concept related terms (characteristic). Thus, context related terms might be defined with different meanings in different contexts or for different concepts. The terminology model should also include rule definitions for defining rules for concepts and characteristics.

This approach has been used to construct a generic (reference) terminology model. At an abstract level this defines some of the basic elements of a statistical system (focussing on statistical production rather than statistical theory), and it also contains a large number of specific concepts needed for specific statistical applications.

6. Representation of Models

Whenever software is built there is always a model that represents those aspects of reality that are implemented by the application. However, usually this model is not made explicit, and exists only in the implemented code. As software projects and systems became more complex, the need for proper tools to support software development (or software engineering) became more and more apparent, and various methods were proposed. In the late ‘90s an effort was made to bring the most successful and important proposals together, and this resulted in the development of UML, the Unified Modelling Language.
6.1 The UML standard

The UML standard was developed within the Object Management Group (OMG
) as a way to design and represent object models, especially for software development. It is a collection of diagram types and components for representing various types of object and behaviour. It is a formal specification, with semantics and conventions for representation of every element of a model. The model and the diagrams exist separately but not independently – nothing can appear in a diagram unless it is in the model (so adding things to a diagram adds them to the model), and their role in the model dictates the way they can appear in the diagram..

UML recognises that complexity is at the heart of most modelling, and it provides specific functionality to support this. For example, the same items (whether classes or objects or some other element) can participate in multiple diagrams, with different emphasis or different level of detail or abstraction. This corresponds to the idea of views in relational databases, where the same information can be viewed in different arrangements to meet different needs, or to reveal different aspects of its structure or behaviour.

It also recognises that designs must exist at different levels of detail and need to represent different aspects of the behaviour of a system. This extends from User Requirements (in Use Case diagrams) through Class and Object definitions, down to coding and implementation (Statechart, Activity, Sequence, Component and Deployment diagrams).

The origin and emphasis in most UML descriptions is on software implementation, but there is potential for much wider application for the design of any system that can be conceived in terms of objects. It is rich, complex and extensible, and not tied to any particular implementation language.

A number of tools for designing in UML exist, and it is a requirement of the standard that they are able to exchange design information (which is done using an XML structure called XMI – XML MetaData Interchange). A limitation of this standard is that XMI contains only the specification of the model; it does not contain any information about the diagrams. This is due to be addressed in UML version 2.

Several design methodologies have been developed (generally for software development), consisting of rules and guidelines about how to design good systems. UML thus provides a potential mechanism for a system to be designed in a way that supports interchange between development teams and extension over time.

6.2 Levels of Modelling

Models can be built at various levels of abstraction, from the description of a specific instance (say the metadata for a particular dataset), through the specification of the allowed structure (and behaviour) for a particular type of metadata, through the generic description of the types of structure that could exist in a model for metadata, right up to the specification of what it means to build a model.

The OMG approach explicitly recognises these levels. Within this structure, an actual instance of metadata for a model is at level 0, while the model itself is level 1. The specification used to build the model is at level 2, often called a meta-model, and UML is an example. UML modelling tools allow us to produce models at level 1, by understanding the structure and semantics of a model at level 2 (the UML specification). Level 3 defines the components (classes, attributes, associations, etc) from which actual modelling frameworks (such as UML) can be built.

6.3 The Role of XML

XML (eXtensible Markup Language
) is a method for representing complex structures as linear text in an XML Document. Because an XML document is just text it is easy to construct the technical layers of protocols for passing such documents between applications. This is very important for information interchange, since text files and streams are very easy to exchange. So XML overcomes an important obstacle to effective interchange, by providing a simple solution to the exchange transport problem. It is a major contribution to solving the plumbing problem associated with the interchange of complex information. Of course, we still have the problem of deciding what the proper structure is for the complex information that we wish to communicate and interchange.

XML is a syntax, within which we can build communication languages by choosing the vocabulary that is needed for a particular subject area. It is a markup language (based on a much older system called SGML) and the text contains marker tags, in the form <word> … </word> – these identify the content (between the start and end markers) as being of type word. We choose the names for the tags (the vocabulary), so we can identify whatever we need to. The tags can be nested, so we can produce complex structures (and we can have sophisticated rules specifying what is allowed).

The expected structure for a document can be specified in one of two ways, a Document Type Definition (DTD) or the more recent XML Schema Definition (XSD); they are similar, but not exactly equivalent. An XML document that obeys the XML rules about matching tags is said to be well-formed, whereas one that conforms to such a definition is said to be valid. Both these specifications are restricted to the expected structure of the XML document – there is no way (except as comments) of specifying the semantics of the elements of the data structure.

6.3.1 Basic Structures

For very simple situations where there are few elements to be exchanged, and where the number of parties to the exchange is small, the structure can be designed as a DTD or XSD in any text editor. An example of such a simple structure is the triple-s standard for exchange of basic statistical data and metadata. The structures are sufficiently simple that the whole DTD or XSD can be written on one page and easily understood by anyone familiar with that technology. The problem of agreeing on the semantics of the structure can be addressed by verbal agreement between the parties, or by annotating the definition using comments.

6.3.2 Complex structures

For more complex structures the use of some more specialised form of editor is recommended. Any XML editor can be used to design a schema to specify a structure, because an XSD is an XML document. This has the advantage that an XML editor will automatically check whether a document is well-formed.
If a DTD is to be built then a specific DTD editor is needed, because this is not an XML document. In general there are advantages in using specialised DTD or XSD editors, since they can know that the task is to design a structure, not just build a general XML document.
Figure 1: XSD Structure for Concepts in a Glossary

[image: image1.png]+Name_
string
*Source
string
+Date_
string
+Ref
strin:
+Description
string
+Glossary @* Concept @*ts_ynonymE
string
+Usage
®string]
@ +Link_
+Name_
string
*Source
string
@ +Characteristic, +Synonym
i ®stri)r:g -
+Description
string

@‘ Link

A number of specialised applications are available to support the design of document structures. Some are little more than text editors with syntax checking, while others provide much more extensive facilities (at a price). For example, in XML Authority (part of Turbo XML) a structure can be designed graphically, and then saved as either a DTD or an XSD. An example structure diagram is shown in Figure 1.

6.3.3 Semantics

Neither a DTD nor an XSD allows for the specification of any formal semantics for an XML structure (beyond the strong data typing of XSD). Comments can be inserted into the design, but these are not enforceable or executable, and it is not even sure that a new user of the structure will read the comments. The Codebook proposal from the Data Documentation Initiative (DDI) includes some comments within the DTD, but is also accompanied by many pages of description of the intentions for the use and content of the many elements in the structure. More formal and extensive methods for reaching agreement on the meanings of terms can be employed, such as the Terminology Models mentioned later. These are useful, but remain limited to textual descriptions, albeit with more structure.

In contrast, Object Modelling techniques such as UML include the specification of behaviour as well as structure.
6.4 Examples

6.4.1 Class Diagram for triple-s
By designing in UML it is possible to express structure and the semantics associated with the behaviour of the elements of the structure. Figure 2 shows the data structure of the triple-s metadata proposal as a UML Class Diagram – this diagram does not include all the semantics that can be expressed in UML, and there are a few aspects of the triple-s semantics that cannot be expressed in UML. In UML, the various forms of shape and line all distinguish aspects of the semantics of the model. For example, the diagram shows (among other things) that the SSS, Survey, Record and Variable elements form a hierarchy, whereas Variable is a composition of elements (Position, Values, Size) whose presence depends on the Type of the Variable.

Figure 2: UML Class Diagram for the Triple-S structure

[image: image2.emf]SSS Survey Record Variable

Position

Size

Values

Range Value Spread

width [0..1] : integer

from : integer

to : integer Text : texts

1

Ident : string

href [0..1] : string

Subfields : integer

Version : string

Options [0..1] : string

Languages [0..1] : string

Date [0..1] : string

Time [0..1] : string

Origin [0..1] : string

User [0..1] : string

1

*

Version [0..1] : string

Title [0..1] : texts

1

*

Name [0..1] : string

Start : integer

Finish [0..1] : integer

1

1

0..1

1

0..1

multiple

Ident : string

type : vartype

use [0..1] : usetype

name : string

label : texts

filter [0..1] : string

size : integer

single, multiple, quantity

character

1

1

1

1

*

0..1

0..1

Code : integer

*

A structure designed in UML can easily be converted to an XML structure (though there are some possible difficulties), and the behaviour can be implemented in code that uses the APIs to access the XML documents. Not all semantics can be expressed in UML, so there is still a need to obtain agreement among users on the meanings of terms based on language, and here the Terminology Models are useful.

6.4.2 Special Values: an example of semantics

Missing values are commonplace in statistical data. In relational databases we have the concept of Null, to represent the absence of any information, but in statistics we often have some information, represented by codes, about why the expected information is not present. This idea we refer to as Special Values, meaning that such values in a field are not examples of the measure for the field, but are indicators of some other type of information. In the metadata we would want to identify such values as Special, and give some indication of their type. This is a difficult area, where agreement is not easy, but some examples of types of special value are:

· Refused

· Not Known

· No Answer

· Question not asked by interviewer

· Not applicable

One of these possibilities is fundamentally different from the rest. The first four indicate situations where the question was asked (or should have been asked) and code the reason why the respondent did not give any answer. The last indicates that the structure of the questionnaire is such that the respondent is not expected to answer the question (for whatever reason). This distinction has an implication when the data for this field is tabulated: for not applicable codes the respondent should usually be excluded from the tabulation (does not contribute to the denominator), whereas for applicable but missing codes the respondent should be included in some residual category. However, this may not be the case if the question was skipped because the answer could be inferred from some other answer.

All this indicates that there is considerable semantic content associated with this statistical concept, and the semantics need to be understood by systems that process or manipulate the data with reference to the metadata. These semantics can (generally) be represented explicitly in a model defined in UML, and then implemented in corresponding code. In pure XML the only option is to include them as comments, and to rely on the reader to take note and understand.

6.5 UML in practice

Almost all training and discussions about modelling now focus on UML. It is probably not reasonable to claim that UML is the dominant method for actual modelling work, since a great deal of modelling is still done using older tools and methods, but no one is promoting these older tools as preferable to UML.

With use, some limitations have been identified in UML. These can be addressed through the extensibility mechanisms, but it would be better if they were in the standard, to avoid duplicate or inconsistent extensions, and so that their semantics were implemented directly in the modelling tools. These issues will be addressed in the forthcoming design of UML 2.
UML is a rich and complex concept, and is not easy to learn comprehensively. Training material usually starts with the Class Diagrams, as the easiest to learn. This represents the static structure of the model, and corresponds to the entities (components) that are needed in a metadata model. Dependencies and relationships are shown in this type of diagram, and the structure can readily be converted to an XML structure definition to facilitate the exchange of information about an instance of a model between applications that implement the whole model.

Methods (behaviour) can easily be defined for classes, with their functionality described in words. Specifying the functionality formally (through state, sequence and activity diagrams) requires rather more familiarity, but is worth doing since it can then be converted into code that enforces the behaviour.

7. Model Development

The conclusion we draw from the forgoing is that UML (or some similar equivalent) is the correct tool to use for building models of statistical processes and the associated metadata. It allows us to express structure and behaviour with sufficient detail and precision for us to be confident that different implementations based on this model (if they correctly use the contained specifications) will be able to interoperate.
However this still leaves us with two problems. We have to discover the characteristics that are appropriate to include in the model for the area of statistics that we are modelling, and we cannot expect the domain specialists who have this knowledge in their heads to be able to express it directly in the terms needed to build a model, let alone to express it directly in UML. Once we have built systems from the model we will have to train users to use the systems correctly. That will involve them understanding the concepts and procedures built in to the model, and we again cannot expect them to do that by examination of the UML diagrams.

The extraction of domain knowledge involves the identification of concepts, structures, relationships, processes, constraints, rules, etc. This is based on discussion and agreement among domain specialists, and has to be done in terms that they understand. However the knowledge will need to be organised and expressed in a way that is coherent and amenable to transfer into a UML model, so the process needs to be moderated by modelling specialists, probably one who specialises in the domain area and one who is expert in the representation of models in UML.

Note that this elucidation and identification process implies the development of conceptual structures to represent the knowledge, and this may bring new insights to the domain specialists and alter the way they structure their thinking about the domain. This implies an iterative process that includes training the domain specialists to understand a perhaps more abstract expression of their knowledge than they normally use.
This process of discovering domain structures is akin to processes of User-Centred Design that are current in IT, the main difference being that we are trying to tease out underlying generalities, rather than reproduce some existing manual system.

The method of Terminological Modelling, espoused by Karge and mentioned previously, has a major role to play at this stage, as it provides a simple but formal structure to record concepts, definitions, structural relationships associations and semantics (in descriptions). These will need to be converted to more appropriate structures later for the UML model, but are sufficiently formal to allow precision without introducing unnecessary obscurity. Experience in developing models for various statistical processing components with the Nordic and other NSIs (for example in the Neufchatel Group working on Classification Schemes) shows the value of this method.
From such a domain-focussed specification the UML specification will need to be produced. In general, domain concepts will map into UML Class structures (usually not all at the same level of abstraction), and the semantics of these will need to be extracted from the concept descriptions, and refined (with iteration through the domain group) until the necessary degree of detail and precision is attained. Process specifications will similarly need to be developed and agreed.

Notice that as part of the process of getting agreement that the UML model is correct, some method is needed to map the content of the UML specification back to the terms that can be understood by the domain specialists. In part this can be done by training them to understand more of the UML, and producing UML diagrams focussed on their needs, but ideally we need tools that allow us to view the UML in less precise but more approachable terms.
8. Communicating Models

After developing a model in UML, and possibly implementing software and processes based on it, we need to be able to communicate appropriate aspects of the design to potential users of the model or the systems. The UML may meet some of this need for some users, but in general we will need simpler (less detailed and precise) presentations that meet the particular needs of users.
For example, users of a system based on the model will need introductory material about the principles of operation of the system, will need guidance on the operating procedures, and will need reference material about the rules and assumptions that are embedded in the model (and hence in the system). In addition there will be aspects of the conceptual view of the application domain that are included in the model (in the conceptual part) but which do not have any equivalent in the implementation.

In practice, getting users and operators of a metadata-based system to understand the concepts and nuances behind a model may well a more difficult task than building the model or the system. This is particularly true where a new system involves changes to working practices – unless these are seen as directly contributing to the substantive objective of the system. Similar considerations will apply in persuading other system designers and developers that a particular model is appropriate for their purposes. These issues would not normally be a primary concern for technical model designers, but must be included in the overall plan for developing a model and bringing it into practical use.

If a model is truly complete, then most of the detailed information needed by users should be present in some form. However, since the presentation of this material will need to be specialised to the domain of application of the model, it is not reasonable to expect that a UML modelling tool will come with appropriate views and reports built-in. There will be viewing and reporting tools available (diagrams and textual reports), but these will need to be used to produce the customised material required for the domain.
Technical and reference material can clearly be produced from the model using tools in this way, but explanatory material, which is not necessary for systems implementation, will only be present if has been intentionally included in the model descriptions. Some of this may flow from the conceptual modelling, but much will have to be specially written. This is hardly a surprise, since all system development should include the development of appropriate training and explanatory materials. Modelling with UML is no exception. It should be possible to include this material within the model, so that it remains closely linked to the more technical elements. The Holy Grail is to construct the informal materials in such a way that where appropriate they refer to the formal components and can automatically remain consistent if the model if modified.
9. Conclusions

UML is the ideal form to hold the master version of the design of models or systems related to statistical metadata. This is because it is able to represent precisely and in detail almost all aspects of the structures, processes, methods, constraints, relationships, interactions, etc. involved.

UML is too complex to be a natural form of communication except for technical specialists, so other forms of representation or documentation are needed to support the discovery of knowledge to feed into the model, and to support designers or users of related applications and systems. These are standard issues for User-Centred Design.

XML is the ideal format for the exchange of actual instances of statistical metadata between applications, because it is simple to transmit over standard protocols, and because it is well supported by manipulation APIs at the application level. However, it is not adequate to merely design an XML structure as specification of a model, since this cannot include a rigorous specification of the semantics of the elements of the structure, nor anything about processes or behaviour. Instead a suitable XML structure should be derived from the structural components of a full UML design.
Practical issues over the introduction and acceptance of new systems can be as important to an organisation as the detailed correctness of a model, so must enter in to the overall development process.
10. Appendix 1: The Object Paradigm

Much current (and recent) work on modelling is based on the Object-Oriented paradigm, and this is the approach assumed for UML.

An object is a structured collection of information, an instance of a particular component (such as a classification). An object must conform to its definition, and the general definition of a particular type of object is called a class (not a particularly good choice of name). The specification of a class determines the structure and semantics of the objects that are instances of that class – the objects can contain different information, since they describe different instances, but their structure and behaviour is the same
.

The specification of a class includes the attributes which form its structure – these may be simple (such as numbers or strings) or complex (effectively links to and collections of other objects).

Every object (instance) has a unique identity, and this can be referenced by other objects. Object identities are global, so object references do not need different forms for different types of object.

Classes support the idea of inheritance, specialisation and generalisation. One class can be defined as based on another, so that it inherits all the properties (structure and semantics) of its parent class. New structure and semantics can be defined for the child, but only those things that are different have to be specified. The child class is a specialisation of the parent, which in turn is a generalisation of the child. In particular, this means that a child class is also valid anywhere that the parent class can appear in a structure or an operation (because it inherits all its’ parent’s structure and behaviour). A child class can substitute its own behaviour for that of its parent if appropriate – this is called polymorphism. For example, a child could respond to a ‘print’ command differently from its parent, because it has extended content and/or more specialised understanding of how this should be presented.

A class can be dependent on another, in that it needs to know about the structure and semantics of the depended class, so that it can make use of it. This is a one-way relationship. Where one object makes reference to another (of the same or a different class) this is called an association, and this is usually bi-directional. For example, a data cube may be constructed with reference to a particular classification for one of its dimensions. In the implementation of the model the dimension could contain a reference to the classification, and the classification may maintain a list of all the dimensions that reference it.

References can be traversed without knowing what type of object is at the other end. Generally it is useful to design an object structure (class) so that references are organised according to their type, but it is always possible to follow a reference first, and then find out what type of object has been reached afterwards.

Andrew Westlake, last updated 15-Oct-03
� 	www.epros.ed.ac.uk/metanet/

� 	Data Documentation Initiative – www.icpsr.umich.edu/DDI/index.html

� 	www.triple-s.org

� 	www.omg.org

� 	A standard from the W3C world wide web consortium – at � HYPERLINK "http://www.w3.org/XML" ��www.w3.org/XML�

� 	The behaviour of an object may depend on the values it contains, but only in a way defined for the class as a whole.

Page 1 of 13
Page 13 of 13

[image: image3.wmf]